# 4.3 Logarithmic functions  (Page 4/9)

 Page 4 / 9

## Finding the value of a common logarithm mentally

Evaluate $\text{\hspace{0.17em}}y=\mathrm{log}\left(1000\right)\text{\hspace{0.17em}}$ without using a calculator.

First we rewrite the logarithm in exponential form: $\text{\hspace{0.17em}}{10}^{y}=1000.\text{\hspace{0.17em}}$ Next, we ask, “To what exponent must $\text{\hspace{0.17em}}10\text{\hspace{0.17em}}$ be raised in order to get 1000?” We know

${10}^{3}=1000$

Therefore, $\text{\hspace{0.17em}}\mathrm{log}\left(1000\right)=3.$

Evaluate $\text{\hspace{0.17em}}y=\mathrm{log}\left(1,000,000\right).$

$\mathrm{log}\left(1,000,000\right)=6$

Given a common logarithm with the form $\text{\hspace{0.17em}}y=\mathrm{log}\left(x\right),$ evaluate it using a calculator.

1. Press [LOG] .
2. Enter the value given for $\text{\hspace{0.17em}}x,$ followed by [ ) ] .
3. Press [ENTER] .

## Finding the value of a common logarithm using a calculator

Evaluate $\text{\hspace{0.17em}}y=\mathrm{log}\left(321\right)\text{\hspace{0.17em}}$ to four decimal places using a calculator.

• Press [LOG] .
• Enter 321 , followed by [ ) ] .
• Press [ENTER] .

Rounding to four decimal places, $\text{\hspace{0.17em}}\mathrm{log}\left(321\right)\approx 2.5065.$

Evaluate $\text{\hspace{0.17em}}y=\mathrm{log}\left(123\right)\text{\hspace{0.17em}}$ to four decimal places using a calculator.

$\mathrm{log}\left(123\right)\approx 2.0899$

## Rewriting and solving a real-world exponential model

The amount of energy released from one earthquake was 500 times greater than the amount of energy released from another. The equation $\text{\hspace{0.17em}}{10}^{x}=500\text{\hspace{0.17em}}$ represents this situation, where $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ is the difference in magnitudes on the Richter Scale. To the nearest thousandth, what was the difference in magnitudes?

We begin by rewriting the exponential equation in logarithmic form.

Next we evaluate the logarithm using a calculator:

• Press [LOG] .
• Enter $\text{\hspace{0.17em}}500,$ followed by [ ) ] .
• Press [ENTER] .
• To the nearest thousandth, $\text{\hspace{0.17em}}\mathrm{log}\left(500\right)\approx 2.699.$

The difference in magnitudes was about $\text{\hspace{0.17em}}2.699.$

The amount of energy released from one earthquake was $\text{\hspace{0.17em}}\text{8,500}\text{\hspace{0.17em}}$ times greater than the amount of energy released from another. The equation $\text{\hspace{0.17em}}{10}^{x}=8500\text{\hspace{0.17em}}$ represents this situation, where $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ is the difference in magnitudes on the Richter Scale. To the nearest thousandth, what was the difference in magnitudes?

The difference in magnitudes was about $\text{\hspace{0.17em}}3.929.$

## Using natural logarithms

The most frequently used base for logarithms is $\text{\hspace{0.17em}}e.\text{\hspace{0.17em}}$ Base $\text{\hspace{0.17em}}e\text{\hspace{0.17em}}$ logarithms are important in calculus and some scientific applications; they are called natural logarithms . The base $\text{\hspace{0.17em}}e\text{\hspace{0.17em}}$ logarithm, $\text{\hspace{0.17em}}{\mathrm{log}}_{e}\left(x\right),$ has its own notation, $\text{\hspace{0.17em}}\mathrm{ln}\left(x\right).$

Most values of $\text{\hspace{0.17em}}\mathrm{ln}\left(x\right)\text{\hspace{0.17em}}$ can be found only using a calculator. The major exception is that, because the logarithm of 1 is always 0 in any base, $\text{\hspace{0.17em}}\mathrm{ln}1=0.\text{\hspace{0.17em}}$ For other natural logarithms, we can use the $\text{\hspace{0.17em}}\mathrm{ln}\text{\hspace{0.17em}}$ key that can be found on most scientific calculators. We can also find the natural logarithm of any power of $\text{\hspace{0.17em}}e\text{\hspace{0.17em}}$ using the inverse property of logarithms.

## Definition of the natural logarithm

A natural logarithm    is a logarithm with base $\text{\hspace{0.17em}}e.$ We write ${\mathrm{log}}_{e}\left(x\right)$ simply as $\mathrm{ln}\left(x\right).$ The natural logarithm of a positive number $x$ satisfies the following definition.

For $\text{\hspace{0.17em}}x>0,$

We read $\text{\hspace{0.17em}}\mathrm{ln}\left(x\right)\text{\hspace{0.17em}}$ as, “the logarithm with base $\text{\hspace{0.17em}}e\text{\hspace{0.17em}}$ of $\text{\hspace{0.17em}}x$ ” or “the natural logarithm of $\text{\hspace{0.17em}}x.$

The logarithm $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ is the exponent to which $\text{\hspace{0.17em}}e\text{\hspace{0.17em}}$ must be raised to get $\text{\hspace{0.17em}}x.$

Since the functions $\text{\hspace{0.17em}}y=e{}^{x}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}y=\mathrm{ln}\left(x\right)\text{\hspace{0.17em}}$ are inverse functions, $\text{\hspace{0.17em}}\mathrm{ln}\left({e}^{x}\right)=x\text{\hspace{0.17em}}$ for all $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}e{}^{\mathrm{ln}\left(x\right)}=x\text{\hspace{0.17em}}$ for $\text{\hspace{0.17em}}x>0.$

Given a natural logarithm with the form $\text{\hspace{0.17em}}y=\mathrm{ln}\left(x\right),$ evaluate it using a calculator.

1. Press [LN] .
2. Enter the value given for $\text{\hspace{0.17em}}x,$ followed by [ ) ] .
3. Press [ENTER] .

how fast can i understand functions without much difficulty
what is set?
a colony of bacteria is growing exponentially doubling in size every 100 minutes. how much minutes will it take for the colony of bacteria to triple in size
I got 300 minutes. is it right?
Patience
no. should be about 150 minutes.
Jason
It should be 158.5 minutes.
Mr
ok, thanks
Patience
100•3=300 300=50•2^x 6=2^x x=log_2(6) =2.5849625 so, 300=50•2^2.5849625 and, so, the # of bacteria will double every (100•2.5849625) = 258.49625 minutes
Thomas
what is the importance knowing the graph of circular functions?
can get some help basic precalculus
What do you need help with?
Andrew
how to convert general to standard form with not perfect trinomial
can get some help inverse function
ismail
Rectangle coordinate
how to find for x
it depends on the equation
Robert
yeah, it does. why do we attempt to gain all of them one side or the other?
Melissa
whats a domain
The domain of a function is the set of all input on which the function is defined. For example all real numbers are the Domain of any Polynomial function.
Spiro
Spiro; thanks for putting it out there like that, 😁
Melissa
foci (–7,–17) and (–7,17), the absolute value of the differenceof the distances of any point from the foci is 24.
difference between calculus and pre calculus?
give me an example of a problem so that I can practice answering
x³+y³+z³=42
Robert
dont forget the cube in each variable ;)
Robert
of she solves that, well ... then she has a lot of computational force under her command ....
Walter
what is a function?
I want to learn about the law of exponent
explain this