<< Chapter < Page Chapter >> Page >

Using interval notation to express all real numbers less than or equal to a Or greater than or equal to b

Write the interval expressing all real numbers less than or equal to −1 or greater than or equal to 1.

We have to write two intervals for this example. The first interval must indicate all real numbers less than or equal to 1. So, this interval begins at and ends at −1 , which is written as ( , −1 ] .

The second interval must show all real numbers greater than or equal to 1 , which is written as [ 1 , ) . However, we want to combine these two sets. We accomplish this by inserting the union symbol, , between the two intervals.

( , −1 ] [ 1 , )
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Express all real numbers less than −2 or greater than or equal to 3 in interval notation.

( , −2 ) [ 3 , )

Got questions? Get instant answers now!

Using the properties of inequalities

When we work with inequalities, we can usually treat them similarly to but not exactly as we treat equalities. We can use the addition property and the multiplication property to help us solve them. The one exception is when we multiply or divide by a negative number; doing so reverses the inequality symbol.

Properties of inequalities

A d d i t i o n   P r o p e r t y If  a < b ,  then  a + c < b + c . M u l t i p l i c a t i o n   P r o p e r t y If  a < b  and  c > 0 ,  then  a c < b c . If  a < b  and  c < 0 ,  then  a c > b c .

These properties also apply to a b , a > b , and a b .

Demonstrating the addition property

Illustrate the addition property for inequalities by solving each of the following:

  • (a) x 15 < 4
  • (b) 6 x 1
  • (c) x + 7 > 9

The addition property for inequalities states that if an inequality exists, adding or subtracting the same number on both sides does not change the inequality.


  1. x 15 < 4 x 15 + 15 < 4 + 15   Add 15 to both sides . x < 19

  2. 6 x 1 6 + 1 x 1 + 1 Add 1 to both sides . 7 x

  3. x + 7 > 9 x + 7 7 > 9 7 Subtract 7 from both sides . x > 2
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Solve: 3 x −2 < 1.

x < 1

Got questions? Get instant answers now!

Demonstrating the multiplication property

Illustrate the multiplication property for inequalities by solving each of the following:

  1. 3 x < 6
  2. −2 x 1 5
  3. 5 x > 10

  1. 3 x < 6 1 3 ( 3 x ) < ( 6 ) 1 3 x < 2

  2. 2 x 1 5 2 x 6 ( 1 2 ) ( 2 x ) ( 6 ) ( 1 2 ) Multiply by  1 2 . x 3 Reverse the inequality .

  3. 5 x > 10 x > 5 ( 1 ) ( x ) > ( 5 ) ( 1 ) Multiply by  1. x < 5 Reverse the inequality .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Solve: 4 x + 7 2 x 3.

x −5

Got questions? Get instant answers now!

Solving inequalities in one variable algebraically

As the examples have shown, we can perform the same operations on both sides of an inequality, just as we do with equations; we combine like terms and perform operations. To solve, we isolate the variable.

Solving an inequality algebraically

Solve the inequality: 13 7 x 10 x 4.

Solving this inequality is similar to solving an equation up until the last step.

13 7 x 10 x 4 13 17 x −4 Move variable terms to one side of the inequality . −17 x −17 Isolate the variable term . x 1 Dividing both sides by  −17  reverses the inequality .

The solution set is given by the interval ( , 1 ] , or all real numbers less than and including 1.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Solve the inequality and write the answer using interval notation: x + 4 < 1 2 x + 1.

( 2 , )

Got questions? Get instant answers now!

Solving an inequality with fractions

Solve the following inequality and write the answer in interval notation: 3 4 x 5 8 + 2 3 x .

We begin solving in the same way we do when solving an equation.

3 4 x 5 8 + 2 3 x 3 4 x 2 3 x 5 8 Put variable terms on one side . 9 12 x 8 12 x 5 8 Write fractions with common denominator . 17 12 x 5 8 x 5 8 ( 12 17 ) Multiplying by a negative number reverses the inequality . x 15 34

The solution set is the interval ( , 15 34 ] .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

The sequence is {1,-1,1-1.....} has
amit Reply
circular region of radious
Kainat Reply
how can we solve this problem
Joel Reply
Sin(A+B) = sinBcosA+cosBsinA
Eseka Reply
Prove it
Eseka
Please prove it
Eseka
hi
Joel
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
Arleathia Reply
find the sum of 28th term of the AP 3+10+17+---------
Prince Reply
I think you should say "28 terms" instead of "28th term"
Vedant
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n
SANDESH Reply
write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
the polar co-ordinate of the point (-1, -1)
Sumit Reply
Practice Key Terms 4

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask