<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Plot complex numbers in the complex plane.
  • Find the absolute value of a complex number.
  • Write complex numbers in polar form.
  • Convert a complex number from polar to rectangular form.
  • Find products of complex numbers in polar form.
  • Find quotients of complex numbers in polar form.
  • Find powers of complex numbers in polar form.
  • Find roots of complex numbers in polar form.

“God made the integers; all else is the work of man.” This rather famous quote by nineteenth-century German mathematician Leopold Kronecker sets the stage for this section on the polar form of a complex number. Complex numbers were invented by people and represent over a thousand years of continuous investigation and struggle by mathematicians such as Pythagoras , Descartes , De Moivre, Euler , Gauss , and others. Complex numbers answered questions that for centuries had puzzled the greatest minds in science.

We first encountered complex numbers in Complex Numbers . In this section, we will focus on the mechanics of working with complex numbers: translation of complex numbers from polar form to rectangular form and vice versa, interpretation of complex numbers in the scheme of applications, and application of De Moivre’s Theorem.

Plotting complex numbers in the complex plane

Plotting a complex number     a + b i is similar to plotting a real number, except that the horizontal axis represents the real part of the number, a , and the vertical axis represents the imaginary part of the number, b i .

Given a complex number a + b i , plot it in the complex plane.

  1. Label the horizontal axis as the real axis and the vertical axis as the imaginary axis.
  2. Plot the point in the complex plane by moving a units in the horizontal direction and b units in the vertical direction.

Plotting a complex number in the complex plane

Plot the complex number 2 3 i in the complex plane    .

From the origin, move two units in the positive horizontal direction and three units in the negative vertical direction. See [link] .

Plot of 2-3i in the complex plane (2 along the real axis, -3 along the imaginary axis).
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Plot the point 1 + 5 i in the complex plane.

Plot of 1+5i in the complex plane (1 along the real axis, 5 along the imaginary axis).
Got questions? Get instant answers now!

Finding the absolute value of a complex number

The first step toward working with a complex number in polar form is to find the absolute value. The absolute value of a complex number is the same as its magnitude , or | z | . It measures the distance from the origin to a point in the plane. For example, the graph of z = 2 + 4 i , in [link] , shows | z | .

Plot of 2+4i in the complex plane and its magnitude, |z| = rad 20.

Absolute value of a complex number

Given z = x + y i , a complex number, the absolute value of z is defined as

| z | = x 2 + y 2

It is the distance from the origin to the point ( x , y ) .

Notice that the absolute value of a real number gives the distance of the number from 0, while the absolute value of a complex number gives the distance of the number from the origin, ( 0 ,   0 ) .

Finding the absolute value of a complex number with a radical

Find the absolute value of z = 5 i .

Using the formula, we have

| z | = x 2 + y 2 | z | = ( 5 ) 2 + ( 1 ) 2 | z | = 5 + 1 | z | = 6

See [link] .

Plot of z=(rad5 - i) in the complex plane and its magnitude rad6.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the absolute value of the complex number z = 12 5 i .

13

Got questions? Get instant answers now!

Finding the absolute value of a complex number

Given z = 3 4 i , find | z | .

Using the formula, we have

| z | = x 2 + y 2 | z | = ( 3 ) 2 + ( 4 ) 2 | z | = 9 + 16 | z | = 25 | z | = 5

The absolute value z is 5. See [link] .

Plot of (3-4i) in the complex plane and its magnitude |z| =5.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

answer and questions in exercise 11.2 sums
Yp Reply
how do u calculate inequality of irrational number?
Alaba
give me an example
Chris
and I will walk you through it
Chris
cos (-z)= cos z .
Swadesh
what is a algebra
Jallah Reply
(x+x)3=?
Narad
what is the identity of 1-cos²5x equal to?
liyemaikhaya Reply
__john __05
Kishu
Hi
Abdel
hi
Ye
hi
Nokwanda
C'est comment
Abdel
Hi
Amanda
hello
SORIE
Hiiii
Chinni
hello
Ranjay
hi
ANSHU
hiiii
Chinni
h r u friends
Chinni
yes
Hassan
so is their any Genius in mathematics here let chat guys and get to know each other's
SORIE
I speak French
Abdel
okay no problem since we gather here and get to know each other
SORIE
hi im stupid at math and just wanna join here
Yaona
lol nahhh none of us here are stupid it's just that we have Fast, Medium, and slow learner bro but we all going to work things out together
SORIE
it's 12
what is the function of sine with respect of cosine , graphically
Karl Reply
tangent bruh
Steve
cosx.cos2x.cos4x.cos8x
Aashish Reply
sinx sin2x is linearly dependent
cr Reply
what is a reciprocal
Ajibola Reply
The reciprocal of a number is 1 divided by a number. eg the reciprocal of 10 is 1/10 which is 0.1
Shemmy
 Reciprocal is a pair of numbers that, when multiplied together, equal to 1. Example; the reciprocal of 3 is ⅓, because 3 multiplied by ⅓ is equal to 1
Jeza
each term in a sequence below is five times the previous term what is the eighth term in the sequence
Funmilola Reply
I don't understand how radicals works pls
Kenny Reply
How look for the general solution of a trig function
collins Reply
stock therom F=(x2+y2) i-2xy J jaha x=a y=o y=b
Saurabh Reply
sinx sin2x is linearly dependent
cr
root under 3-root under 2 by 5 y square
Himanshu Reply
The sum of the first n terms of a certain series is 2^n-1, Show that , this series is Geometric and Find the formula of the n^th
amani Reply
cosA\1+sinA=secA-tanA
Aasik Reply
Wrong question
Saad
why two x + seven is equal to nineteen.
Kingsley Reply
The numbers cannot be combined with the x
Othman
2x + 7 =19
humberto
2x +7=19. 2x=19 - 7 2x=12 x=6
Yvonne
because x is 6
SAIDI
Practice Key Terms 4

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask