# 11.6 Solving systems with gaussian elimination  (Page 2/13)

 Page 2 / 13

## Writing a system of equations from an augmented matrix form

Find the system of equations from the augmented matrix.

When the columns represent the variables $\text{\hspace{0.17em}}x,\text{\hspace{0.17em}}$ $y,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z,$

Write the system of equations from the augmented matrix.

$\left[\begin{array}{ccc}1& -1& \text{\hspace{0.17em}}\text{\hspace{0.17em}}1\\ 2& -1& \text{\hspace{0.17em}}\text{\hspace{0.17em}}3\\ 0& \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}1& \text{\hspace{0.17em}}\text{\hspace{0.17em}}1\end{array}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}|\text{\hspace{0.17em}}\text{\hspace{0.17em}}\begin{array}{c}\text{\hspace{0.17em}}\text{\hspace{0.17em}}5\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}1\\ -9\end{array}\right]$

$\begin{array}{c}x\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}y\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}+\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}z=5\\ 2x\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\text{\hspace{0.17em}}\text{\hspace{0.17em}}y\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}+\text{\hspace{0.17em}}\text{\hspace{0.17em}}3z=1\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}y\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}+\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}z=-9\end{array}$

## Performing row operations on a matrix

Now that we can write systems of equations in augmented matrix form, we will examine the various row operations    that can be performed on a matrix, such as addition, multiplication by a constant, and interchanging rows.

Performing row operations on a matrix is the method we use for solving a system of equations. In order to solve the system of equations, we want to convert the matrix to row-echelon form    , in which there are ones down the main diagonal    from the upper left corner to the lower right corner, and zeros in every position below the main diagonal as shown.

We use row operations corresponding to equation operations to obtain a new matrix that is row-equivalent    in a simpler form. Here are the guidelines to obtaining row-echelon form.

1. In any nonzero row, the first nonzero number is a 1. It is called a leading 1.
2. Any all-zero rows are placed at the bottom on the matrix.
3. Any leading 1 is below and to the right of a previous leading 1.
4. Any column containing a leading 1 has zeros in all other positions in the column.

To solve a system of equations we can perform the following row operations to convert the coefficient matrix    to row-echelon form and do back-substitution to find the solution.

1. Interchange rows. (Notation: $\text{\hspace{0.17em}}{R}_{i}\text{\hspace{0.17em}}↔\text{\hspace{0.17em}}\text{\hspace{0.17em}}{R}_{j}$ )
2. Multiply a row by a constant. (Notation: $\text{\hspace{0.17em}}c{R}_{i}$ )
3. Add the product of a row multiplied by a constant to another row. (Notation: $\text{\hspace{0.17em}}{R}_{i}+c{R}_{j}\right)$

Each of the row operations corresponds to the operations we have already learned to solve systems of equations in three variables. With these operations, there are some key moves that will quickly achieve the goal of writing a matrix in row-echelon form. To obtain a matrix in row-echelon form for finding solutions, we use Gaussian elimination, a method that uses row operations to obtain a 1 as the first entry so that row 1 can be used to convert the remaining rows.

## Gaussian elimination

The Gaussian elimination    method refers to a strategy used to obtain the row-echelon form of a matrix. The goal is to write matrix $\text{\hspace{0.17em}}A\text{\hspace{0.17em}}$ with the number 1 as the entry down the main diagonal and have all zeros below.

The first step of the Gaussian strategy includes obtaining a 1 as the first entry, so that row 1 may be used to alter the rows below.

Given an augmented matrix, perform row operations to achieve row-echelon form.

1. The first equation should have a leading coefficient of 1. Interchange rows or multiply by a constant, if necessary.
2. Use row operations to obtain zeros down the first column below the first entry of 1.
3. Use row operations to obtain a 1 in row 2, column 2.
4. Use row operations to obtain zeros down column 2, below the entry of 1.
5. Use row operations to obtain a 1 in row 3, column 3.
6. Continue this process for all rows until there is a 1 in every entry down the main diagonal and there are only zeros below.
7. If any rows contain all zeros, place them at the bottom.

what are you up to?
nothing up todat yet
Miranda
hi
jai
hello
jai
Miranda Drice
jai
aap konsi country se ho
jai
which language is that
Miranda
I am living in india
jai
good
Miranda
what is the formula for calculating algebraic
I think the formula for calculating algebraic is the statement of the equality of two expression stimulate by a set of addition, multiplication, soustraction, division, raising to a power and extraction of Root. U believe by having those in the equation you will be in measure to calculate it
Miranda
state and prove Cayley hamilton therom
hello
Propessor
hi
Miranda
the Cayley hamilton Theorem state if A is a square matrix and if f(x) is its characterics polynomial then f(x)=0 in another ways evey square matrix is a root of its chatacteristics polynomial.
Miranda
hi
jai
hi Miranda
jai
thanks
Propessor
welcome
jai
What is algebra
algebra is a branch of the mathematics to calculate expressions follow.
Miranda
Miranda Drice would you mind teaching me mathematics? I think you are really good at math. I'm not good at it. In fact I hate it. 😅😅😅
Jeffrey
lolll who told you I'm good at it
Miranda
something seems to wispher me to my ear that u are good at it. lol
Jeffrey
lolllll if you say so
Miranda
but seriously, Im really bad at math. And I hate it. But you see, I downloaded this app two months ago hoping to master it.
Jeffrey
which grade are you in though
Miranda
oh woww I understand
Miranda
Jeffrey
Jeffrey
Miranda
how come you finished in college and you don't like math though
Miranda
gotta practice, holmie
Steve
if you never use it you won't be able to appreciate it
Steve
I don't know why. But Im trying to like it.
Jeffrey
yes steve. you're right
Jeffrey
so you better
Miranda
what is the solution of the given equation?
which equation
Miranda
I dont know. lol
Jeffrey
Miranda
Jeffrey
answer and questions in exercise 11.2 sums
how do u calculate inequality of irrational number?
Alaba
give me an example
Chris
and I will walk you through it
Chris
cos (-z)= cos z .
what is a algebra
(x+x)3=?
6x
Obed
what is the identity of 1-cos²5x equal to?
__john __05
Kishu
Hi
Abdel
hi
Ye
hi
Nokwanda
C'est comment
Abdel
Hi
Amanda
hello
SORIE
Hiiii
Chinni
hello
Ranjay
hi
ANSHU
hiiii
Chinni
h r u friends
Chinni
yes
Hassan
so is their any Genius in mathematics here let chat guys and get to know each other's
SORIE
I speak French
Abdel
okay no problem since we gather here and get to know each other
SORIE
hi im stupid at math and just wanna join here
Yaona
lol nahhh none of us here are stupid it's just that we have Fast, Medium, and slow learner bro but we all going to work things out together
SORIE
it's 12
what is the function of sine with respect of cosine , graphically
tangent bruh
Steve
cosx.cos2x.cos4x.cos8x
sinx sin2x is linearly dependent
what is a reciprocal
The reciprocal of a number is 1 divided by a number. eg the reciprocal of 10 is 1/10 which is 0.1
Shemmy
Reciprocal is a pair of numbers that, when multiplied together, equal to 1. Example; the reciprocal of 3 is ⅓, because 3 multiplied by ⅓ is equal to 1
Jeza
each term in a sequence below is five times the previous term what is the eighth term in the sequence
I don't understand how radicals works pls
How look for the general solution of a trig function By By By OpenStax By By Dionne Mahaffey By Wey Hey By Anh Dao By Michael Pitt By Brooke Delaney By Madison Christian By OpenStax By Naveen Tomar