<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Use arrow notation.
  • Solve applied problems involving rational functions.
  • Find the domains of rational functions.
  • Identify vertical asymptotes.
  • Identify horizontal asymptotes.
  • Graph rational functions.

Suppose we know that the cost of making a product is dependent on the number of items, x , produced. This is given by the equation C ( x ) = 15,000 x 0.1 x 2 + 1000. If we want to know the average cost for producing x items, we would divide the cost function by the number of items, x .

The average cost function, which yields the average cost per item for x items produced, is

f ( x ) = 15,000 x 0.1 x 2 + 1000 x

Many other application problems require finding an average value in a similar way, giving us variables in the denominator. Written without a variable in the denominator, this function will contain a negative integer power.

In the last few sections, we have worked with polynomial functions, which are functions with non-negative integers for exponents. In this section, we explore rational functions, which have variables in the denominator.

Using arrow notation

We have seen the graphs of the basic reciprocal function and the squared reciprocal function from our study of toolkit functions. Examine these graphs, as shown in [link] , and notice some of their features.

Graphs of f(x)=1/x and f(x)=1/x^2

Several things are apparent if we examine the graph of f ( x ) = 1 x .

  1. On the left branch of the graph, the curve approaches the x -axis ( y = 0 )   as   x .
  2. As the graph approaches x = 0 from the left, the curve drops, but as we approach zero from the right, the curve rises.
  3. Finally, on the right branch of the graph, the curves approaches the x- axis ( y = 0 )   as   x .

To summarize, we use arrow notation    to show that x or f ( x ) is approaching a particular value. See [link] .

Symbol Meaning
x a x approaches a from the left ( x < a but close to a )
x a + x approaches a from the right ( x > a but close to a )
x x approaches infinity ( x increases without bound)
x x approaches negative infinity ( x decreases without bound)
f ( x ) the output approaches infinity (the output increases without bound)
f ( x ) the output approaches negative infinity (the output decreases without bound)
f ( x ) a the output approaches a

Local behavior of f ( x ) = 1 x

Let’s begin by looking at the reciprocal function, f ( x ) = 1 x . We cannot divide by zero, which means the function is undefined at x = 0 ; so zero is not in the domain . As the input values approach zero from the left side (becoming very small, negative values), the function values decrease without bound (in other words, they approach negative infinity). We can see this behavior in [link] .

x –0.1 –0.01 –0.001 –0.0001
f ( x ) = 1 x –10 –100 –1000 –10,000

We write in arrow notation

as  x 0 , f ( x )

As the input values approach zero from the right side (becoming very small, positive values), the function values increase without bound (approaching infinity). We can see this behavior in [link] .

x 0.1 0.01 0.001 0.0001
f ( x ) = 1 x 10 100 1000 10,000

We write in arrow notation

As  x 0 + ,   f ( x ) .

See [link] .

Graph of f(x)=1/x which denotes the end behavior. As x goes to negative infinity, f(x) goes to 0, and as x goes to 0^-, f(x) goes to negative infinity. As x goes to positive infinity, f(x) goes to 0, and as x goes to 0^+, f(x) goes to positive infinity.

This behavior creates a vertical asymptote , which is a vertical line that the graph approaches but never crosses. In this case, the graph is approaching the vertical line x = 0 as the input becomes close to zero. See [link] .

Questions & Answers

why I'm sending you solved question
Teach me abt the echelon method
exact value of cos(π/3-π/4)
Ankit Reply
What is differentiation?
Intakhab Reply
modul questions trigonometry
Thamarai Reply
differentiate f(t)=1/4t to the power 4 +8
Jessica Reply
I need trigonometry,polynomial
duru Reply
Why is 7 on top
Bertha Reply
simplify cot x / csc x
Catherine Reply
👉🌹Solve🌻 Given that: cotx/cosx =cosx/sinx/cosx =1/sinx =cosecx Ans.
what is the period of cos?
your question might not seem clear as you asked. ask well to get perfect answers put your question on a table I'm willing to help you Mr Siyamthemba
simplify: cot x/csc x
sorry i didnt realize you were actually asking someone else to put their question on here. i thought this was where i was supposed to.
some to dereve formula for bulky density
Solve Given that: cotx/cosx =cosx/sinx/cosx =1/sinx =cosecx Ans.
if tan alpha + beta is equal to sin x + Y then prove that X square + Y square - 2 I got hyperbole 2 Beta + 1 is equal to zero
Rahul Reply
sin^4+sin^2=1, prove that tan^2-tan^4+1=0
what is the formula used for this question? "Jamal wants to save $54,000 for a down payment on a home. How much will he need to invest in an account with 8.2% APR, compounding daily, in order to reach his goal in 5 years?"
Kuz Reply
i don't need help solving it I just need a memory jogger please.
A = P(1 + r/n) ^rt
how to solve an expression when equal to zero
Mintah Reply
its a very simple
gave your expression then i solve
Hy guys, I have a problem when it comes on solving equations and expressions, can you help me 😭😭
Tomorrow its an revision on factorising and Simplifying...
ok sent the quiz
What is the value of log-1
the value of log1=0
What is the value of i^i
log -1 is 1.36
no I m right
No sister.
no I m right
Joju Reply
jaldi batao
Find the value of x between 0degree and 360 degree which satisfy the equation 3sinx =tanx
musah Reply
Practice Key Terms 5

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?