<< Chapter < Page Chapter >> Page >

Simplify by rewriting and using substitution

Simplify the expression by rewriting and using identities:

csc 2 θ cot 2 θ

We can start with the Pythagorean identity.

1 + cot 2 θ = csc 2 θ

Now we can simplify by substituting 1 + cot 2 θ for csc 2 θ . We have

csc 2 θ cot 2 θ = 1 + cot 2 θ cot 2 θ = 1
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Use algebraic techniques to verify the identity: cos θ 1 + sin θ = 1 sin θ cos θ .

(Hint: Multiply the numerator and denominator on the left side by 1 sin θ . )

cos θ 1 + sin θ ( 1 sin θ 1 sin θ ) = cos θ ( 1 sin θ ) 1 sin 2 θ = cos θ ( 1 sin θ ) cos 2 θ = 1 sin θ cos θ
Got questions? Get instant answers now!

Access these online resources for additional instruction and practice with the fundamental trigonometric identities.

Key equations

Pythagorean identities cos 2 θ + sin 2 θ = 1 1 + cot 2 θ = csc 2 θ 1 + tan 2 θ = sec 2 θ
Even-odd identities tan ( θ ) = tan θ cot ( θ ) = cot θ sin ( θ ) = sin θ csc ( θ ) = csc θ cos ( θ ) = cos θ sec ( θ ) = sec θ
Reciprocal identities sin θ = 1 csc θ cos θ = 1 sec θ tan θ = 1 cot θ csc θ = 1 sin θ sec θ = 1 cos θ cot θ = 1 tan θ
Quotient identities tan θ = sin θ cos θ cot θ = cos θ sin θ

Key concepts

  • There are multiple ways to represent a trigonometric expression. Verifying the identities illustrates how expressions can be rewritten to simplify a problem.
  • Graphing both sides of an identity will verify it. See [link] .
  • Simplifying one side of the equation to equal the other side is another method for verifying an identity. See [link] and [link] .
  • The approach to verifying an identity depends on the nature of the identity. It is often useful to begin on the more complex side of the equation. See [link] .
  • We can create an identity and then verify it. See [link] .
  • Verifying an identity may involve algebra with the fundamental identities. See [link] and [link] .
  • Algebraic techniques can be used to simplify trigonometric expressions. We use algebraic techniques throughout this text, as they consist of the fundamental rules of mathematics. See [link] , [link] , and [link] .

Section exercises

Verbal

We know g ( x ) = cos x is an even function, and f ( x ) = sin x and h ( x ) = tan x are odd functions. What about G ( x ) = cos 2 x , F ( x ) = sin 2 x , and H ( x ) = tan 2 x ? Are they even, odd, or neither? Why?

All three functions, F , G , and H , are even.

This is because F ( x ) = sin ( x ) sin ( x ) = ( sin x ) ( sin x ) = sin 2 x = F ( x ) , G ( x ) = cos ( x ) cos ( x ) = cos x cos x = cos 2 x = G ( x ) and H ( x ) = tan ( x ) tan ( x ) = ( tan x ) ( tan x ) = tan 2 x = H ( x ) .

Got questions? Get instant answers now!

Examine the graph of f ( x ) = sec x on the interval [ π , π ] . How can we tell whether the function is even or odd by only observing the graph of f ( x ) = sec x ?

Got questions? Get instant answers now!

After examining the reciprocal identity for sec t , explain why the function is undefined at certain points.

When cos t = 0 , then sec t = 1 0 , which is undefined.

Got questions? Get instant answers now!

All of the Pythagorean identities are related. Describe how to manipulate the equations to get from sin 2 t + cos 2 t = 1 to the other forms.

Got questions? Get instant answers now!

Algebraic

For the following exercises, use the fundamental identities to fully simplify the expression.

sin x cos x sec x

sin x

Got questions? Get instant answers now!

sin ( x ) cos ( x ) csc ( x )

Got questions? Get instant answers now!

tan x sin x + sec x cos 2 x

sec x

Got questions? Get instant answers now!

csc x + cos x cot ( x )

Got questions? Get instant answers now!

cot t + tan t sec ( t )

csc t

Got questions? Get instant answers now!

3 sin 3 t csc t + cos 2 t + 2 cos ( t ) cos t

Got questions? Get instant answers now!

tan ( x ) cot ( x )

−1

Got questions? Get instant answers now!

sin ( x ) cos x sec x csc x tan x cot x

Got questions? Get instant answers now!

1 + tan 2 θ csc 2 θ + sin 2 θ + 1 sec 2 θ

sec 2 x

Got questions? Get instant answers now!

( tan x csc 2 x + tan x sec 2 x ) ( 1 + tan x 1 + cot x ) 1 cos 2 x

Got questions? Get instant answers now!

1 cos 2 x tan 2 x + 2 sin 2 x

sin 2 x + 1

Got questions? Get instant answers now!

For the following exercises, simplify the first trigonometric expression by writing the simplified form in terms of the second expression.

tan x + cot x csc x ; cos x

Got questions? Get instant answers now!

sec x + csc x 1 + tan x ; sin x

1 sin x

Got questions? Get instant answers now!

cos x 1 + sin x + tan x ; cos x

Got questions? Get instant answers now!

1 sin x cos x cot x ; cot x

1 cot x

Got questions? Get instant answers now!

1 1 cos x cos x 1 + cos x ; csc x

Got questions? Get instant answers now!

( sec x + csc x ) ( sin x + cos x ) 2 cot x ; tan x

tan x

Got questions? Get instant answers now!

1 csc x sin x ; sec x  and  tan x

Got questions? Get instant answers now!

1 sin x 1 + sin x 1 + sin x 1 sin x ; sec x  and  tan x

4 sec x tan x

Got questions? Get instant answers now!

tan x ; sec x

Got questions? Get instant answers now!

sec x ; cot x

± 1 cot 2 x + 1

Got questions? Get instant answers now!

sec x ; sin x

Got questions? Get instant answers now!

cot x ; sin x

± 1 sin 2 x sin x

Got questions? Get instant answers now!

cot x ; csc x

Got questions? Get instant answers now!

For the following exercises, verify the identity.

cos x cos 3 x = cos x sin 2 x

Answers will vary. Sample proof:

cos x cos 3 x = cos x ( 1 cos 2 x ) = cos x sin 2 x

Got questions? Get instant answers now!

cos x ( tan x sec ( x ) ) = sin x 1

Got questions? Get instant answers now!

1 + sin 2 x cos 2 x = 1 cos 2 x + sin 2 x cos 2 x = 1 + 2 tan 2 x

Answers will vary. Sample proof:
1 + sin 2 x cos 2 x = 1 cos 2 x + sin 2 x cos 2 x = sec 2 x + tan 2 x = tan 2 x + 1 + tan 2 x = 1 + 2 tan 2 x

Got questions? Get instant answers now!

( sin x + cos x ) 2 = 1 + 2 sin x cos x

Got questions? Get instant answers now!

cos 2 x tan 2 x = 2 sin 2 x sec 2 x

Answers will vary. Sample proof:
cos 2 x tan 2 x = 1 sin 2 x ( sec 2 x 1 ) = 1 sin 2 x sec 2 x + 1 = 2 sin 2 x sec 2 x

Got questions? Get instant answers now!

Extensions

For the following exercises, prove or disprove the identity.

1 1 + cos x 1 1 cos ( x ) = 2 cot x csc x

Got questions? Get instant answers now!

csc 2 x ( 1 + sin 2 x ) = cot 2 x

False

Got questions? Get instant answers now!

( sec 2 ( x ) tan 2 x tan x ) ( 2 + 2 tan x 2 + 2 cot x ) 2 sin 2 x = cos 2 x

Got questions? Get instant answers now!

tan x sec x sin ( x ) = cos 2 x

False

Got questions? Get instant answers now!

sec ( x ) tan x + cot x = sin ( x )

Got questions? Get instant answers now!

1 + sin x cos x = cos x 1 + sin ( x )

Proved with negative and Pythagorean identities

Got questions? Get instant answers now!

For the following exercises, determine whether the identity is true or false. If false, find an appropriate equivalent expression.

cos 2 θ sin 2 θ 1 tan 2 θ = sin 2 θ

Got questions? Get instant answers now!

3 sin 2 θ + 4 cos 2 θ = 3 + cos 2 θ

True 3 sin 2 θ + 4 cos 2 θ = 3 sin 2 θ + 3 cos 2 θ + cos 2 θ = 3 ( sin 2 θ + cos 2 θ ) + cos 2 θ = 3 + cos 2 θ

Got questions? Get instant answers now!

sec θ + tan θ cot θ + cos θ = sec 2 θ

Got questions? Get instant answers now!

Questions & Answers

The sequence is {1,-1,1-1.....} has
amit Reply
circular region of radious
Kainat Reply
how can we solve this problem
Joel Reply
Sin(A+B) = sinBcosA+cosBsinA
Eseka Reply
Prove it
Eseka
Please prove it
Eseka
hi
Joel
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
Arleathia Reply
find the sum of 28th term of the AP 3+10+17+---------
Prince Reply
I think you should say "28 terms" instead of "28th term"
Vedant
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n
SANDESH Reply
write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
the polar co-ordinate of the point (-1, -1)
Sumit Reply
Practice Key Terms 4

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask