<< Chapter < Page Chapter >> Page >

Simplify by rewriting and using substitution

Simplify the expression by rewriting and using identities:

csc 2 θ cot 2 θ

We can start with the Pythagorean identity.

1 + cot 2 θ = csc 2 θ

Now we can simplify by substituting 1 + cot 2 θ for csc 2 θ . We have

csc 2 θ cot 2 θ = 1 + cot 2 θ cot 2 θ = 1
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Use algebraic techniques to verify the identity: cos θ 1 + sin θ = 1 sin θ cos θ .

(Hint: Multiply the numerator and denominator on the left side by 1 sin θ . )

cos θ 1 + sin θ ( 1 sin θ 1 sin θ ) = cos θ ( 1 sin θ ) 1 sin 2 θ = cos θ ( 1 sin θ ) cos 2 θ = 1 sin θ cos θ
Got questions? Get instant answers now!

Access these online resources for additional instruction and practice with the fundamental trigonometric identities.

Key equations

Pythagorean identities cos 2 θ + sin 2 θ = 1 1 + cot 2 θ = csc 2 θ 1 + tan 2 θ = sec 2 θ
Even-odd identities tan ( θ ) = tan θ cot ( θ ) = cot θ sin ( θ ) = sin θ csc ( θ ) = csc θ cos ( θ ) = cos θ sec ( θ ) = sec θ
Reciprocal identities sin θ = 1 csc θ cos θ = 1 sec θ tan θ = 1 cot θ csc θ = 1 sin θ sec θ = 1 cos θ cot θ = 1 tan θ
Quotient identities tan θ = sin θ cos θ cot θ = cos θ sin θ

Key concepts

  • There are multiple ways to represent a trigonometric expression. Verifying the identities illustrates how expressions can be rewritten to simplify a problem.
  • Graphing both sides of an identity will verify it. See [link] .
  • Simplifying one side of the equation to equal the other side is another method for verifying an identity. See [link] and [link] .
  • The approach to verifying an identity depends on the nature of the identity. It is often useful to begin on the more complex side of the equation. See [link] .
  • We can create an identity and then verify it. See [link] .
  • Verifying an identity may involve algebra with the fundamental identities. See [link] and [link] .
  • Algebraic techniques can be used to simplify trigonometric expressions. We use algebraic techniques throughout this text, as they consist of the fundamental rules of mathematics. See [link] , [link] , and [link] .

Section exercises

Verbal

We know g ( x ) = cos x is an even function, and f ( x ) = sin x and h ( x ) = tan x are odd functions. What about G ( x ) = cos 2 x , F ( x ) = sin 2 x , and H ( x ) = tan 2 x ? Are they even, odd, or neither? Why?

All three functions, F , G , and H , are even.

This is because F ( x ) = sin ( x ) sin ( x ) = ( sin x ) ( sin x ) = sin 2 x = F ( x ) , G ( x ) = cos ( x ) cos ( x ) = cos x cos x = cos 2 x = G ( x ) and H ( x ) = tan ( x ) tan ( x ) = ( tan x ) ( tan x ) = tan 2 x = H ( x ) .

Got questions? Get instant answers now!

Examine the graph of f ( x ) = sec x on the interval [ π , π ] . How can we tell whether the function is even or odd by only observing the graph of f ( x ) = sec x ?

Got questions? Get instant answers now!

After examining the reciprocal identity for sec t , explain why the function is undefined at certain points.

When cos t = 0 , then sec t = 1 0 , which is undefined.

Got questions? Get instant answers now!

All of the Pythagorean identities are related. Describe how to manipulate the equations to get from sin 2 t + cos 2 t = 1 to the other forms.

Got questions? Get instant answers now!

Algebraic

For the following exercises, use the fundamental identities to fully simplify the expression.

sin x cos x sec x

sin x

Got questions? Get instant answers now!

sin ( x ) cos ( x ) csc ( x )

Got questions? Get instant answers now!

tan x sin x + sec x cos 2 x

sec x

Got questions? Get instant answers now!

csc x + cos x cot ( x )

Got questions? Get instant answers now!

cot t + tan t sec ( t )

csc t

Got questions? Get instant answers now!

3 sin 3 t csc t + cos 2 t + 2 cos ( t ) cos t

Got questions? Get instant answers now!

tan ( x ) cot ( x )

−1

Got questions? Get instant answers now!

sin ( x ) cos x sec x csc x tan x cot x

Got questions? Get instant answers now!

1 + tan 2 θ csc 2 θ + sin 2 θ + 1 sec 2 θ

sec 2 x

Got questions? Get instant answers now!

( tan x csc 2 x + tan x sec 2 x ) ( 1 + tan x 1 + cot x ) 1 cos 2 x

Got questions? Get instant answers now!

1 cos 2 x tan 2 x + 2 sin 2 x

sin 2 x + 1

Got questions? Get instant answers now!

For the following exercises, simplify the first trigonometric expression by writing the simplified form in terms of the second expression.

tan x + cot x csc x ; cos x

Got questions? Get instant answers now!

sec x + csc x 1 + tan x ; sin x

1 sin x

Got questions? Get instant answers now!

cos x 1 + sin x + tan x ; cos x

Got questions? Get instant answers now!

1 sin x cos x cot x ; cot x

1 cot x

Got questions? Get instant answers now!

1 1 cos x cos x 1 + cos x ; csc x

Got questions? Get instant answers now!

( sec x + csc x ) ( sin x + cos x ) 2 cot x ; tan x

tan x

Got questions? Get instant answers now!

1 csc x sin x ; sec x  and  tan x

Got questions? Get instant answers now!

1 sin x 1 + sin x 1 + sin x 1 sin x ; sec x  and  tan x

4 sec x tan x

Got questions? Get instant answers now!

tan x ; sec x

Got questions? Get instant answers now!

sec x ; cot x

± 1 cot 2 x + 1

Got questions? Get instant answers now!

sec x ; sin x

Got questions? Get instant answers now!

cot x ; sin x

± 1 sin 2 x sin x

Got questions? Get instant answers now!

cot x ; csc x

Got questions? Get instant answers now!

For the following exercises, verify the identity.

cos x cos 3 x = cos x sin 2 x

Answers will vary. Sample proof:

cos x cos 3 x = cos x ( 1 cos 2 x ) = cos x sin 2 x

Got questions? Get instant answers now!

cos x ( tan x sec ( x ) ) = sin x 1

Got questions? Get instant answers now!

1 + sin 2 x cos 2 x = 1 cos 2 x + sin 2 x cos 2 x = 1 + 2 tan 2 x

Answers will vary. Sample proof:
1 + sin 2 x cos 2 x = 1 cos 2 x + sin 2 x cos 2 x = sec 2 x + tan 2 x = tan 2 x + 1 + tan 2 x = 1 + 2 tan 2 x

Got questions? Get instant answers now!

( sin x + cos x ) 2 = 1 + 2 sin x cos x

Got questions? Get instant answers now!

cos 2 x tan 2 x = 2 sin 2 x sec 2 x

Answers will vary. Sample proof:
cos 2 x tan 2 x = 1 sin 2 x ( sec 2 x 1 ) = 1 sin 2 x sec 2 x + 1 = 2 sin 2 x sec 2 x

Got questions? Get instant answers now!

Extensions

For the following exercises, prove or disprove the identity.

1 1 + cos x 1 1 cos ( x ) = 2 cot x csc x

Got questions? Get instant answers now!

csc 2 x ( 1 + sin 2 x ) = cot 2 x

False

Got questions? Get instant answers now!

( sec 2 ( x ) tan 2 x tan x ) ( 2 + 2 tan x 2 + 2 cot x ) 2 sin 2 x = cos 2 x

Got questions? Get instant answers now!

tan x sec x sin ( x ) = cos 2 x

False

Got questions? Get instant answers now!

sec ( x ) tan x + cot x = sin ( x )

Got questions? Get instant answers now!

1 + sin x cos x = cos x 1 + sin ( x )

Proved with negative and Pythagorean identities

Got questions? Get instant answers now!

For the following exercises, determine whether the identity is true or false. If false, find an appropriate equivalent expression.

cos 2 θ sin 2 θ 1 tan 2 θ = sin 2 θ

Got questions? Get instant answers now!

3 sin 2 θ + 4 cos 2 θ = 3 + cos 2 θ

True 3 sin 2 θ + 4 cos 2 θ = 3 sin 2 θ + 3 cos 2 θ + cos 2 θ = 3 ( sin 2 θ + cos 2 θ ) + cos 2 θ = 3 + cos 2 θ

Got questions? Get instant answers now!

sec θ + tan θ cot θ + cos θ = sec 2 θ

Got questions? Get instant answers now!

Questions & Answers

if tan alpha + beta is equal to sin x + Y then prove that X square + Y square - 2 I got hyperbole 2 Beta + 1 is equal to zero
Rahul Reply
sin^4+sin^2=1, prove that tan^2-tan^4+1=0
SAYANTANI Reply
what is the formula used for this question? "Jamal wants to save $54,000 for a down payment on a home. How much will he need to invest in an account with 8.2% APR, compounding daily, in order to reach his goal in 5 years?"
Kuz Reply
i don't need help solving it I just need a memory jogger please.
Kuz
A = P(1 + r/n) ^rt
Dale
how to solve an expression when equal to zero
Mintah Reply
its a very simple
Kavita
gave your expression then i solve
Kavita
Hy guys, I have a problem when it comes on solving equations and expressions, can you help me 😭😭
Thuli
Tomorrow its an revision on factorising and Simplifying...
Thuli
ok sent the quiz
kurash
send
Kavita
Hi
Masum
What is the value of log-1
Masum
the value of log1=0
Kavita
Log(-1)
Masum
What is the value of i^i
Masum
log -1 is 1.36
kurash
No
Masum
no I m right
Kavita
No sister.
Masum
no I m right
Kavita
tan20°×tan30°×tan45°×tan50°×tan60°×tan70°
Joju Reply
jaldi batao
Joju
Find the value of x between 0degree and 360 degree which satisfy the equation 3sinx =tanx
musah Reply
what is sine?
tae Reply
what is the standard form of 1
Sanjana Reply
1×10^0
Akugry
Evalute exponential functions
Sujata Reply
30
Shani
The sides of a triangle are three consecutive natural number numbers and it's largest angle is twice the smallest one. determine the sides of a triangle
Jaya Reply
Will be with you shortly
Inkoom
3, 4, 5 principle from geo? sounds like a 90 and 2 45's to me that my answer
Neese
answer is 2, 3, 4
Gaurav
prove that [a+b, b+c, c+a]= 2[a b c]
Ashutosh Reply
can't prove
Akugry
i can prove [a+b+b+c+c+a]=2[a+b+c]
this is simple
Akugry
hi
Stormzy
x exposant 4 + 4 x exposant 3 + 8 exposant 2 + 4 x + 1 = 0
HERVE Reply
x exposent4+4x exposent3+8x exposent2+4x+1=0
HERVE
How can I solve for a domain and a codomains in a given function?
Oliver Reply
ranges
EDWIN
Thank you I mean range sir.
Oliver
proof for set theory
Kwesi Reply
don't you know?
Inkoom
find to nearest one decimal place of centimeter the length of an arc of circle of radius length 12.5cm and subtending of centeral angle 1.6rad
Martina Reply
Practice Key Terms 4

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask