<< Chapter < Page Chapter >> Page >

Using radians

Because radian    measure is the ratio of two lengths, it is a unitless measure. For example, in [link] , suppose the radius were 2 inches and the distance along the arc were also 2 inches. When we calculate the radian measure of the angle, the “inches” cancel, and we have a result without units. Therefore, it is not necessary to write the label “radians” after a radian measure, and if we see an angle that is not labeled with “degrees” or the degree symbol, we can assume that it is a radian measure.

Considering the most basic case, the unit circle (a circle with radius 1), we know that 1 rotation equals 360 degrees, 360°. We can also track one rotation around a circle by finding the circumference, C = 2 π r , and for the unit circle C = 2 π . These two different ways to rotate around a circle give us a way to convert from degrees to radians.

1  rotation  = 360° = 2 π radians 1 2  rotation = 180° = π radians 1 4  rotation = 90° = π 2 radians

Identifying special angles measured in radians

In addition to knowing the measurements in degrees and radians of a quarter revolution, a half revolution, and a full revolution, there are other frequently encountered angles in one revolution of a circle with which we should be familiar. It is common to encounter multiples of 30, 45, 60, and 90 degrees. These values are shown in [link] . Memorizing these angles will be very useful as we study the properties associated with angles.

A graph of a circle with angles of 0, 30, 45, 60, 90, 120, 135, 150, 180, 210, 225, 240, 270, 300, 315, and 330 degrees.
Commonly encountered angles measured in degrees

Now, we can list the corresponding radian values for the common measures of a circle corresponding to those listed in [link] , which are shown in [link] . Be sure you can verify each of these measures.

A graph of a circle with angles of 0, 30, 45, 60, 90, 120, 135, 150, 180, 210, 225, 240, 270, 300, 315, and 330 degrees. The graph also shows the equivalent amount of radians for each angle of degrees. For example, 30 degrees is equal to pi/6 radians.
Commonly encountered angles measured in radians

Finding a radian measure

Find the radian measure of one-third of a full rotation.

For any circle, the arc length along such a rotation would be one-third of the circumference. We know that

1  rotation = 2 π r


s = 1 3 ( 2 π r ) = 2 π r 3

The radian measure would be the arc length divided by the radius.

radian measure = 2 π r 3 r = 2 π r 3 r = 2 π 3                                                
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the radian measure of three-fourths of a full rotation.

3 π 2

Got questions? Get instant answers now!

Converting between radians and degrees

Because degrees and radians both measure angles, we need to be able to convert between them. We can easily do so using a proportion.

θ 180 = θ R π

This proportion shows that the measure of angle θ in degrees divided by 180 equals the measure of angle θ in radians divided by π .  Or, phrased another way, degrees is to 180 as radians is to π .

Degrees 180 = Radians π

Converting between radians and degrees

To convert between degrees and radians, use the proportion

θ 180 = θ R π

Converting radians to degrees

Convert each radian measure to degrees.

  1. π 6
  2. 3

Because we are given radians and we want degrees, we should set up a proportion and solve it.

  1. We use the proportion, substituting the given information.
    θ 180 = θ R π θ 180 = π 6 π       θ = 180 6       θ = 30
  2. We use the proportion, substituting the given information.
    θ 180 = θ R π θ 180 = 3 π       θ = 3 ( 180 ) π       θ 172
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

what is functions?
Angel Reply
A mathematical relation such that every input has only one out.
yes..it is a relationo of orders pairs of sets one or more input that leads to a exactly one output.
Is a rule that assigns to each element X in a set A exactly one element, called F(x), in a set B.
If the plane intersects the cone (either above or below) horizontally, what figure will be created?
Feemark Reply
can you not take the square root of a negative number
Sharon Reply
No because a negative times a negative is a positive. No matter what you do you can never multiply the same number by itself and end with a negative
Actually you can. you get what's called an Imaginary number denoted by i which is represented on the complex plane. The reply above would be correct if we were still confined to the "real" number line.
Suppose P= {-3,1,3} Q={-3,-2-1} and R= {-2,2,3}.what is the intersection
Elaine Reply
can I get some pretty basic questions
Ama Reply
In what way does set notation relate to function notation
is precalculus needed to take caculus
Amara Reply
It depends on what you already know. Just test yourself with some precalculus questions. If you find them easy, you're good to go.
the solution doesn't seem right for this problem
Mars Reply
what is the domain of f(x)=x-4/x^2-2x-15 then
Conney Reply
x is different from -5&3
All real x except 5 and - 3
how to prroved cos⁴x-sin⁴x= cos²x-sin²x are equal
jeric Reply
Don't think that you can.
By using some imaginary no.
how do you provided cos⁴x-sin⁴x = cos²x-sin²x are equal
jeric Reply
What are the question marks for?
Someone should please solve it for me Add 2over ×+3 +y-4 over 5 simplify (×+a)with square root of two -×root 2 all over a multiply 1over ×-y{(×-y)(×+y)} over ×y
Abena Reply
For the first question, I got (3y-2)/15 Second one, I got Root 2 Third one, I got 1/(y to the fourth power) I dont if it's right cause I can barely understand the question.
Is under distribute property, inverse function, algebra and addition and multiplication function; so is a combined question
find the equation of the line if m=3, and b=-2
Ashley Reply
graph the following linear equation using intercepts method. 2x+y=4
ok, one moment
how do I post your graph for you?
it won't let me send an image?
also for the first one... y=mx+b so.... y=3x-2
y=mx+b you were already given the 'm' and 'b'. so.. y=3x-2
Please were did you get y=mx+b from
y=mx+b is the formula of a straight line. where m = the slope & b = where the line crosses the y-axis. In this case, being that the "m" and "b", are given, all you have to do is plug them into the formula to complete the equation.
thanks Tommy
0=3x-2 2=3x x=3/2 then . y=3/2X-2 I think
co ordinates for x x=0,(-2,0) x=1,(1,1) x=2,(2,4)
"7"has an open circle and "10"has a filled in circle who can I have a set builder notation
Fiston Reply
Where do the rays point?
x=-b+_Гb2-(4ac) ______________ 2a
Ahlicia Reply
I've run into this: x = r*cos(angle1 + angle2) Which expands to: x = r(cos(angle1)*cos(angle2) - sin(angle1)*sin(angle2)) The r value confuses me here, because distributing it makes: (r*cos(angle2))(cos(angle1) - (r*sin(angle2))(sin(angle1)) How does this make sense? Why does the r distribute once
Carlos Reply
so good
this is an identity when 2 adding two angles within a cosine. it's called the cosine sum formula. there is also a different formula when cosine has an angle minus another angle it's called the sum and difference formulas and they are under any list of trig identities
strategies to form the general term
consider r(a+b) = ra + rb. The a and b are the trig identity.

Get the best Precalculus course in your pocket!

Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?