Because
radian measure is the ratio of two lengths, it is a unitless measure. For example, in
[link] , suppose the radius were 2 inches and the distance along the arc were also 2 inches. When we calculate the radian measure of the angle, the “inches” cancel, and we have a result without units. Therefore, it is not necessary to write the label “radians” after a radian measure, and if we see an angle that is not labeled with “degrees” or the degree symbol, we can assume that it is a radian measure.
Considering the most basic case, the
unit circle (a circle with radius 1), we know that 1 rotation equals 360 degrees, 360°. We can also track one rotation around a circle by finding the circumference,
$\text{\hspace{0.17em}}C=2\pi r,$ and for the unit circle
$\text{\hspace{0.17em}}C=2\pi .\text{\hspace{0.17em}}$ These two different ways to rotate around a circle give us a way to convert from degrees to radians.
In addition to knowing the measurements in degrees and radians of a quarter revolution, a half revolution, and a full revolution, there are other frequently encountered angles in one revolution of a circle with which we should be familiar. It is common to encounter multiples of 30, 45, 60, and 90 degrees. These values are shown in
[link] . Memorizing these angles will be very useful as we study the properties associated with angles.
Now, we can list the corresponding radian values for the common measures of a circle corresponding to those listed in
[link] , which are shown in
[link] . Be sure you can verify each of these measures.
Finding a radian measure
Find the radian measure of one-third of a full rotation.
For any circle, the arc length along such a rotation would be one-third of the circumference. We know that
Because degrees and radians both measure angles, we need to be able to convert between them. We can easily do so using a proportion.
$$\frac{\theta}{180}=\frac{{\theta}^{R}}{\pi}$$
This proportion shows that the measure of angle
$\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ in degrees divided by 180 equals the measure of angle
$\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ in radians divided by
$\text{\hspace{0.17em}}\pi .\hspace{0.17em}$ Or, phrased another way, degrees is to 180 as radians is to
$\text{\hspace{0.17em}}\pi .$
No because a negative times a negative is a positive. No matter what you do you can never multiply the same number by itself and end with a negative
lurverkitten
Actually you can. you get what's called an Imaginary number denoted by i which is represented on the complex plane. The reply above would be correct if we were still confined to the "real" number line.
Liam
Suppose P= {-3,1,3} Q={-3,-2-1} and R= {-2,2,3}.what is the intersection
Someone should please solve it for me
Add 2over ×+3 +y-4 over 5
simplify (×+a)with square root of two -×root 2 all over a
multiply 1over ×-y{(×-y)(×+y)} over ×y
For the first question, I got (3y-2)/15
Second one, I got Root 2
Third one, I got 1/(y to the fourth power)
I dont if it's right cause I can barely understand the question.
Is under distribute property, inverse function, algebra and addition and multiplication function; so is a combined question
graph the following linear equation using intercepts method.
2x+y=4
Ashley
how
Wargod
what?
John
ok, one moment
UriEl
how do I post your graph for you?
UriEl
it won't let me send an image?
UriEl
also for the first one... y=mx+b so.... y=3x-2
UriEl
y=mx+b
you were already given the 'm' and 'b'.
so..
y=3x-2
Tommy
Please were did you get y=mx+b from
Abena
y=mx+b is the formula of a straight line.
where m = the slope & b = where the line crosses the y-axis. In this case, being that the "m" and "b", are given, all you have to do is plug them into the formula to complete the equation.
Tommy
thanks Tommy
Nimo
0=3x-2
2=3x
x=3/2
then .
y=3/2X-2
I think
Given
co ordinates for x
x=0,(-2,0)
x=1,(1,1)
x=2,(2,4)
neil
"7"has an open circle and "10"has a filled in circle who can I have a set builder notation
I've run into this:
x = r*cos(angle1 + angle2)
Which expands to:
x = r(cos(angle1)*cos(angle2) - sin(angle1)*sin(angle2))
The r value confuses me here, because distributing it makes:
(r*cos(angle2))(cos(angle1) - (r*sin(angle2))(sin(angle1))
How does this make sense? Why does the r distribute once
this is an identity when 2 adding two angles within a cosine. it's called the cosine sum formula. there is also a different formula when cosine has an angle minus another angle it's called the sum and difference formulas and they are under any list of trig identities
Brad
strategies to form the general term
carlmark
consider r(a+b) = ra + rb. The a and b are the trig identity.