# 12.2 The hyperbola  (Page 4/13)

 Page 6 / 13

Graph the hyperbola given by the equation $\text{\hspace{0.17em}}\frac{{x}^{2}}{144}-\frac{{y}^{2}}{81}=1.\text{\hspace{0.17em}}$ Identify and label the vertices, co-vertices, foci, and asymptotes.

vertices: $\text{\hspace{0.17em}}\left(±12,0\right);\text{\hspace{0.17em}}$ co-vertices: $\text{\hspace{0.17em}}\left(0,±9\right);\text{\hspace{0.17em}}$ foci: $\text{\hspace{0.17em}}\left(±15,0\right);\text{\hspace{0.17em}}$ asymptotes: $\text{\hspace{0.17em}}y=±\frac{3}{4}x;$ ## Graphing hyperbolas not centered at the origin

Graphing hyperbolas centered at a point $\text{\hspace{0.17em}}\left(h,k\right)$ other than the origin is similar to graphing ellipses centered at a point other than the origin. We use the standard forms $\text{\hspace{0.17em}}\frac{{\left(x-h\right)}^{2}}{{a}^{2}}-\frac{{\left(y-k\right)}^{2}}{{b}^{2}}=1\text{\hspace{0.17em}}$ for horizontal hyperbolas, and $\text{\hspace{0.17em}}\frac{{\left(y-k\right)}^{2}}{{a}^{2}}-\frac{{\left(x-h\right)}^{2}}{{b}^{2}}=1\text{\hspace{0.17em}}$ for vertical hyperbolas. From these standard form equations we can easily calculate and plot key features of the graph: the coordinates of its center, vertices, co-vertices, and foci; the equations of its asymptotes; and the positions of the transverse and conjugate axes.

Given a general form for a hyperbola centered at $\text{\hspace{0.17em}}\left(h,k\right),$ sketch the graph.

1. Convert the general form to that standard form. Determine which of the standard forms applies to the given equation.
2. Use the standard form identified in Step 1 to determine the position of the transverse axis; coordinates for the center, vertices, co-vertices, foci; and equations for the asymptotes.
1. If the equation is in the form $\text{\hspace{0.17em}}\frac{{\left(x-h\right)}^{2}}{{a}^{2}}-\frac{{\left(y-k\right)}^{2}}{{b}^{2}}=1,\text{\hspace{0.17em}}$ then
• the transverse axis is parallel to the x -axis
• the center is $\text{\hspace{0.17em}}\left(h,k\right)$
• the coordinates of the vertices are $\text{\hspace{0.17em}}\left(h±a,k\right)$
• the coordinates of the co-vertices are $\text{\hspace{0.17em}}\left(h,k±b\right)$
• the coordinates of the foci are $\text{\hspace{0.17em}}\left(h±c,k\right)$
• the equations of the asymptotes are $\text{\hspace{0.17em}}y=±\frac{b}{a}\left(x-h\right)+k$
2. If the equation is in the form $\text{\hspace{0.17em}}\frac{{\left(y-k\right)}^{2}}{{a}^{2}}-\frac{{\left(x-h\right)}^{2}}{{b}^{2}}=1,\text{\hspace{0.17em}}$ then
• the transverse axis is parallel to the y -axis
• the center is $\text{\hspace{0.17em}}\left(h,k\right)$
• the coordinates of the vertices are $\text{\hspace{0.17em}}\left(h,k±a\right)$
• the coordinates of the co-vertices are $\text{\hspace{0.17em}}\left(h±b,k\right)$
• the coordinates of the foci are $\text{\hspace{0.17em}}\left(h,k±c\right)$
• the equations of the asymptotes are $\text{\hspace{0.17em}}y=±\frac{a}{b}\left(x-h\right)+k$
3. Solve for the coordinates of the foci using the equation $\text{\hspace{0.17em}}c=±\sqrt{{a}^{2}+{b}^{2}}.$
4. Plot the center, vertices, co-vertices, foci, and asymptotes in the coordinate plane and draw a smooth curve to form the hyperbola.

## Graphing a hyperbola centered at ( h , k ) given an equation in general form

Graph the hyperbola    given by the equation $\text{\hspace{0.17em}}9{x}^{2}-4{y}^{2}-36x-40y-388=0.\text{\hspace{0.17em}}$ Identify and label the center, vertices, co-vertices, foci, and asymptotes.

Start by expressing the equation in standard form. Group terms that contain the same variable, and move the constant to the opposite side of the equation.

$\left(9{x}^{2}-36x\right)-\left(4{y}^{2}+40y\right)=388$

Factor the leading coefficient of each expression.

$9\left({x}^{2}-4x\right)-4\left({y}^{2}+10y\right)=388$

Complete the square twice. Remember to balance the equation by adding the same constants to each side.

$9\left({x}^{2}-4x+4\right)-4\left({y}^{2}+10y+25\right)=388+36-100$

Rewrite as perfect squares.

$9{\left(x-2\right)}^{2}-4{\left(y+5\right)}^{2}=324$

Divide both sides by the constant term to place the equation in standard form.

$\frac{{\left(x-2\right)}^{2}}{36}-\frac{{\left(y+5\right)}^{2}}{81}=1$

The standard form that applies to the given equation is $\text{\hspace{0.17em}}\frac{{\left(x-h\right)}^{2}}{{a}^{2}}-\frac{{\left(y-k\right)}^{2}}{{b}^{2}}=1,$ where $\text{\hspace{0.17em}}{a}^{2}=36\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{b}^{2}=81,$ or $\text{\hspace{0.17em}}a=6\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}b=9.\text{\hspace{0.17em}}$ Thus, the transverse axis is parallel to the x -axis. It follows that:

• the center of the ellipse is $\text{\hspace{0.17em}}\left(h,k\right)=\left(2,-5\right)$
• the coordinates of the vertices are $\text{\hspace{0.17em}}\left(h±a,k\right)=\left(2±6,-5\right),\text{\hspace{0.17em}}$ or $\text{\hspace{0.17em}}\left(-4,-5\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(8,-5\right)$
• the coordinates of the co-vertices are $\text{\hspace{0.17em}}\left(h,k±b\right)=\left(2,-5±9\right),\text{\hspace{0.17em}}$ or $\text{\hspace{0.17em}}\left(2,-14\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(2,4\right)$
• the coordinates of the foci are $\text{\hspace{0.17em}}\left(h±c,k\right),\text{\hspace{0.17em}}$ where $\text{\hspace{0.17em}}c=±\sqrt{{a}^{2}+{b}^{2}}.\text{\hspace{0.17em}}$ Solving for $\text{\hspace{0.17em}}c,$ we have

$c=±\sqrt{36+81}=±\sqrt{117}=±3\sqrt{13}$

Therefore, the coordinates of the foci are $\text{\hspace{0.17em}}\left(2-3\sqrt{13},-5\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(2+3\sqrt{13},-5\right).$

The equations of the asymptotes are $\text{\hspace{0.17em}}y=±\frac{b}{a}\left(x-h\right)+k=±\frac{3}{2}\left(x-2\right)-5.$

Next, we plot and label the center, vertices, co-vertices, foci, and asymptotes and draw smooth curves to form the hyperbola, as shown in [link] .

what are you up to?
nothing up todat yet
Miranda
hi
jai
hello
jai
Miranda Drice
jai
aap konsi country se ho
jai
which language is that
Miranda
I am living in india
jai
good
Miranda
what is the formula for calculating algebraic
I think the formula for calculating algebraic is the statement of the equality of two expression stimulate by a set of addition, multiplication, soustraction, division, raising to a power and extraction of Root. U believe by having those in the equation you will be in measure to calculate it
Miranda
state and prove Cayley hamilton therom
hello
Propessor
hi
Miranda
the Cayley hamilton Theorem state if A is a square matrix and if f(x) is its characterics polynomial then f(x)=0 in another ways evey square matrix is a root of its chatacteristics polynomial.
Miranda
hi
jai
hi Miranda
jai
thanks
Propessor
welcome
jai
What is algebra
algebra is a branch of the mathematics to calculate expressions follow.
Miranda
Miranda Drice would you mind teaching me mathematics? I think you are really good at math. I'm not good at it. In fact I hate it. 😅😅😅
Jeffrey
lolll who told you I'm good at it
Miranda
something seems to wispher me to my ear that u are good at it. lol
Jeffrey
lolllll if you say so
Miranda
but seriously, Im really bad at math. And I hate it. But you see, I downloaded this app two months ago hoping to master it.
Jeffrey
which grade are you in though
Miranda
oh woww I understand
Miranda
Jeffrey
Jeffrey
Miranda
how come you finished in college and you don't like math though
Miranda
gotta practice, holmie
Steve
if you never use it you won't be able to appreciate it
Steve
I don't know why. But Im trying to like it.
Jeffrey
yes steve. you're right
Jeffrey
so you better
Miranda
what is the solution of the given equation?
which equation
Miranda
I dont know. lol
Jeffrey
Miranda
Jeffrey
answer and questions in exercise 11.2 sums
how do u calculate inequality of irrational number?
Alaba
give me an example
Chris
and I will walk you through it
Chris
cos (-z)= cos z .
cos(- z)=cos z
Mustafa
what is a algebra
(x+x)3=?
6x
Obed
what is the identity of 1-cos²5x equal to?
__john __05
Kishu
Hi
Abdel
hi
Ye
hi
Nokwanda
C'est comment
Abdel
Hi
Amanda
hello
SORIE
Hiiii
Chinni
hello
Ranjay
hi
ANSHU
hiiii
Chinni
h r u friends
Chinni
yes
Hassan
so is their any Genius in mathematics here let chat guys and get to know each other's
SORIE
I speak French
Abdel
okay no problem since we gather here and get to know each other
SORIE
hi im stupid at math and just wanna join here
Yaona
lol nahhh none of us here are stupid it's just that we have Fast, Medium, and slow learner bro but we all going to work things out together
SORIE
it's 12
what is the function of sine with respect of cosine , graphically
tangent bruh
Steve
cosx.cos2x.cos4x.cos8x
sinx sin2x is linearly dependent
what is a reciprocal
The reciprocal of a number is 1 divided by a number. eg the reciprocal of 10 is 1/10 which is 0.1
Shemmy
Reciprocal is a pair of numbers that, when multiplied together, equal to 1. Example; the reciprocal of 3 is ⅓, because 3 multiplied by ⅓ is equal to 1
Jeza
each term in a sequence below is five times the previous term what is the eighth term in the sequence
I don't understand how radicals works pls
How look for the general solution of a trig function By By By Brooke Delaney By Cath Yu By OpenStax By Robert Morris By Richley Crapo By Sandy Yamane By Brooke Delaney By OpenStax By Sebastian Sieczko... By Robert Murphy