# 2.2 Linear equations in one variable  (Page 4/15)

 Page 4 / 15

Solve $\text{\hspace{0.17em}}\frac{-3}{2x+1}=\frac{4}{3x+1}.\text{\hspace{0.17em}}$ State the excluded values.

$x=-\frac{7}{17}.\text{\hspace{0.17em}}$ Excluded values are $\text{\hspace{0.17em}}x=-\frac{1}{2}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}x=-\frac{1}{3}.$

## Solving a rational equation with factored denominators and stating excluded values

Solve the rational equation after factoring the denominators: $\text{\hspace{0.17em}}\frac{2}{x+1}-\frac{1}{x-1}=\frac{2x}{{x}^{2}-1}.\text{\hspace{0.17em}}$ State the excluded values.

We must factor the denominator $\text{\hspace{0.17em}}{x}^{2}-1.\text{\hspace{0.17em}}$ We recognize this as the difference of squares, and factor it as $\text{\hspace{0.17em}}\left(x-1\right)\left(x+1\right).\text{\hspace{0.17em}}$ Thus, the LCD that contains each denominator is $\text{\hspace{0.17em}}\left(x-1\right)\left(x+1\right).\text{\hspace{0.17em}}$ Multiply the whole equation by the LCD, cancel out the denominators, and solve the remaining equation.

The solution is $\text{\hspace{0.17em}}-3.\text{\hspace{0.17em}}$ The excluded values are $\text{\hspace{0.17em}}1\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}-1.$

Solve the rational equation: $\text{\hspace{0.17em}}\frac{2}{x-2}+\frac{1}{x+1}=\frac{1}{{x}^{2}-x-2}.$

$x=\frac{1}{3}$

## Finding a linear equation

Perhaps the most familiar form of a linear equation is the slope-intercept form, written as $\text{\hspace{0.17em}}y=mx+b,$ where $\text{\hspace{0.17em}}m=\text{slope}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}b=y\text{−intercept}\text{.}\text{\hspace{0.17em}}$ Let us begin with the slope.

## The slope of a line

The slope    of a line refers to the ratio of the vertical change in y over the horizontal change in x between any two points on a line. It indicates the direction in which a line slants as well as its steepness. Slope is sometimes described as rise over run.

$m=\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$

If the slope is positive, the line slants to the right. If the slope is negative, the line slants to the left. As the slope increases, the line becomes steeper. Some examples are shown in [link] . The lines indicate the following slopes: $\text{\hspace{0.17em}}m=-3,$ $m=2,$ and $\text{\hspace{0.17em}}m=\frac{1}{3}.$

## The slope of a line

The slope of a line, m , represents the change in y over the change in x. Given two points, $\text{\hspace{0.17em}}\left({x}_{1},{y}_{1}\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left({x}_{2},{y}_{2}\right),$ the following formula determines the slope of a line containing these points:

$m=\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$

## Finding the slope of a line given two points

Find the slope of a line that passes through the points $\text{\hspace{0.17em}}\left(2,-1\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(-5,3\right).$

We substitute the y- values and the x- values into the formula.

$\begin{array}{ccc}\hfill m& =& \frac{3-\left(-1\right)}{-5-2}\hfill \\ & =& \frac{4}{-7}\hfill \\ & =& -\frac{4}{7}\hfill \end{array}$

The slope is $\text{\hspace{0.17em}}-\frac{4}{7}.$

Find the slope of the line that passes through the points $\text{\hspace{0.17em}}\left(-2,6\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(1,4\right).$

$m=-\frac{2}{3}$

## Identifying the slope and y- Intercept of a line given an equation

Identify the slope and y- intercept, given the equation $\text{\hspace{0.17em}}y=-\frac{3}{4}x-4.$

As the line is in $\text{\hspace{0.17em}}y=mx+b\text{\hspace{0.17em}}$ form, the given line has a slope of $\text{\hspace{0.17em}}m=-\frac{3}{4}.\text{\hspace{0.17em}}$ The y- intercept is $\text{\hspace{0.17em}}b=-4.$

## The point-slope formula

Given the slope and one point on a line, we can find the equation of the line using the point-slope formula.

$y-{y}_{1}=m\left(x-{x}_{1}\right)$

This is an important formula, as it will be used in other areas of college algebra and often in calculus to find the equation of a tangent line. We need only one point and the slope of the line to use the formula. After substituting the slope and the coordinates of one point into the formula, we simplify it and write it in slope-intercept form.

## The point-slope formula

Given one point and the slope, the point-slope formula will lead to the equation of a line:

$y-{y}_{1}=m\left(x-{x}_{1}\right)$

## Finding the equation of a line given the slope and one point

Write the equation of the line with slope $\text{\hspace{0.17em}}m=-3\text{\hspace{0.17em}}$ and passing through the point $\text{\hspace{0.17em}}\left(4,8\right).\text{\hspace{0.17em}}$ Write the final equation in slope-intercept form.

Using the point-slope formula, substitute $\text{\hspace{0.17em}}-3\text{\hspace{0.17em}}$ for m and the point $\text{\hspace{0.17em}}\left(4,8\right)\text{\hspace{0.17em}}$ for $\text{\hspace{0.17em}}\left({x}_{1},{y}_{1}\right).$

$\begin{array}{ccc}\hfill y-{y}_{1}& =& m\left(x-{x}_{1}\right)\hfill \\ \hfill y-8& =& -3\left(x-4\right)\hfill \\ \hfill y-8& =& -3x+12\hfill \\ \hfill y& =& -3x+20\hfill \end{array}$

if tan alpha + beta is equal to sin x + Y then prove that X square + Y square - 2 I got hyperbole 2 Beta + 1 is equal to zero
sin^4+sin^2=1, prove that tan^2-tan^4+1=0
what is the formula used for this question? "Jamal wants to save \$54,000 for a down payment on a home. How much will he need to invest in an account with 8.2% APR, compounding daily, in order to reach his goal in 5 years?"
i don't need help solving it I just need a memory jogger please.
Kuz
A = P(1 + r/n) ^rt
Dale
how to solve an expression when equal to zero
its a very simple
Kavita
gave your expression then i solve
Kavita
Hy guys, I have a problem when it comes on solving equations and expressions, can you help me 😭😭
Thuli
Tomorrow its an revision on factorising and Simplifying...
Thuli
ok sent the quiz
kurash
send
Kavita
Hi
Masum
What is the value of log-1
Masum
the value of log1=0
Kavita
Log(-1)
Masum
What is the value of i^i
Masum
log -1 is 1.36
kurash
No
Masum
no I m right
Kavita
No sister.
Masum
no I m right
Kavita
tan20°×tan30°×tan45°×tan50°×tan60°×tan70°
jaldi batao
Joju
Find the value of x between 0degree and 360 degree which satisfy the equation 3sinx =tanx
what is sine?
what is the standard form of 1
1×10^0
Akugry
Evalute exponential functions
30
Shani
The sides of a triangle are three consecutive natural number numbers and it's largest angle is twice the smallest one. determine the sides of a triangle
Will be with you shortly
Inkoom
3, 4, 5 principle from geo? sounds like a 90 and 2 45's to me that my answer
Neese
Gaurav
prove that [a+b, b+c, c+a]= 2[a b c]
can't prove
Akugry
i can prove [a+b+b+c+c+a]=2[a+b+c]
this is simple
Akugry
hi
Stormzy
x exposant 4 + 4 x exposant 3 + 8 exposant 2 + 4 x + 1 = 0
x exposent4+4x exposent3+8x exposent2+4x+1=0
HERVE
How can I solve for a domain and a codomains in a given function?
ranges
EDWIN
Thank you I mean range sir.
Oliver
proof for set theory
don't you know?
Inkoom
find to nearest one decimal place of centimeter the length of an arc of circle of radius length 12.5cm and subtending of centeral angle 1.6rad