[link] displays the age of children in years and their corresponding heights. This table displays just some of the data available for the heights and ages of children. We can see right away that this table does not represent a function because the same input value, 5 years, has two different output values, 40 in. and 42 in.
Age in years,
$\text{}a\text{}$ (input)
5
5
6
7
8
9
10
Height in inches,
$\text{}h\text{}$ (output)
40
42
44
47
50
52
54
Given a table of input and output values, determine whether the table represents a function.
Identify the input and output values.
Check to see if each input value is paired with only one output value. If so, the table represents a function.
Identifying tables that represent functions
Which table,
[link] ,
[link] , or
[link] , represents a function (if any)?
Input
Output
2
1
5
3
8
6
Input
Output
–3
5
0
1
4
5
Input
Output
1
0
5
2
5
4
[link] and
[link] define functions. In both, each input value corresponds to exactly one output value.
[link] does not define a function because the input value of 5 corresponds to two different output values.
When a table represents a function, corresponding input and output values can also be specified using function notation.
The function represented by
[link] can be represented by writing
When we know an input value and want to determine the corresponding output value for a function, we
evaluate the function. Evaluating will always produce one result because each input value of a function corresponds to exactly one output value.
When we know an output value and want to determine the input values that would produce that output value, we set the output equal to the function’s formula and
solve for the input. Solving can produce more than one solution because different input values can produce the same output value.
Evaluation of functions in algebraic forms
When we have a function in formula form, it is usually a simple matter to evaluate the function. For example, the function
$\text{\hspace{0.17em}}f\left(x\right)=5-3{x}^{2}\text{\hspace{0.17em}}$ can be evaluated by squaring the input value, multiplying by 3, and then subtracting the product from 5.
Given the formula for a function, evaluate.
Replace the input variable in the formula with the value provided.
Calculate the result.
Evaluating functions at specific values
Evaluate
$\text{\hspace{0.17em}}f\left(x\right)={x}^{2}+3x-4\text{\hspace{0.17em}}$ at
$2$
$a$
$a+h$
$\frac{f\left(a+h\right)-f\left(a\right)}{h}$
Replace the
$\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ in the function with each specified value.
Because the input value is a number, 2, we can use simple algebra to simplify.
graph the following linear equation using intercepts method.
2x+y=4
Ashley
how
Wargod
what?
John
ok, one moment
UriEl
how do I post your graph for you?
UriEl
it won't let me send an image?
UriEl
also for the first one... y=mx+b so.... y=3x-2
UriEl
y=mx+b
you were already given the 'm' and 'b'.
so..
y=3x-2
Tommy
Please were did you get y=mx+b from
Abena
y=mx+b is the formula of a straight line.
where m = the slope & b = where the line crosses the y-axis. In this case, being that the "m" and "b", are given, all you have to do is plug them into the formula to complete the equation.
Tommy
"7"has an open circle and "10"has a filled in circle who can I have a set builder notation
I've run into this:
x = r*cos(angle1 + angle2)
Which expands to:
x = r(cos(angle1)*cos(angle2) - sin(angle1)*sin(angle2))
The r value confuses me here, because distributing it makes:
(r*cos(angle2))(cos(angle1) - (r*sin(angle2))(sin(angle1))
How does this make sense? Why does the r distribute once
this is an identity when 2 adding two angles within a cosine. it's called the cosine sum formula. there is also a different formula when cosine has an angle minus another angle it's called the sum and difference formulas and they are under any list of trig identities
Brad
strategies to form the general term
carlmark
consider r(a+b) = ra + rb. The a and b are the trig identity.
Mike
How can you tell what type of parent function a graph is ?
generally by how the graph looks and understanding what the base parent functions look like and perform on a graph
William
if you have a graphed line, you can have an idea by how the directions of the line turns, i.e. negative, positive, zero
William
y=x will obviously be a straight line with a zero slope
William
y=x^2 will have a parabolic line opening to positive infinity on both sides of the y axis
vice versa with y=-x^2 you'll have both ends of the parabolic line pointing downward heading to negative infinity on both sides of the y axis
William
y=x will be a straight line, but it will have a slope of one. Remember, if y=1 then x=1, so for every unit you rise you move over positively one unit. To get a straight line with a slope of 0, set y=1 or any integer.
Aaron
yes, correction on my end, I meant slope of 1 instead of slope of 0
Typically a function 'f' will take 'x' as input, and produce 'y' as output. As
'f(x)=y'.
According to Google,
"The range of a function is the complete set of all possible resulting values of the dependent variable (y, usually), after we have substituted the domain."
Thomas
Sorry, I don't know where the "Â"s came from. They shouldn't be there. Just ignore them. :-)
Thomas
GREAT ANSWER THOUGH!!!
Darius
Thanks.
Thomas
Â
Thomas
It is the Â that should not be there. It doesn't seem to show if encloses in quotation marks.
"Â" or 'Â' ... Â
I've been struggling so much through all of this. my final is in four weeks 😭
Tiffany
this book is an excellent resource! have you guys ever looked at the online tutoring? there's one that is called "That Tutor Guy" and he goes over a lot of the concepts
Darius
thank you I have heard of him. I should check him out.
Tiffany
is there any question in particular?
Joe
I have always struggled with math. I get lost really easy, if you have any advice for that, it would help tremendously.
Tiffany
Sure, are you in high school or college?
Darius
Hi, apologies for the delayed response. I'm in college.
The center is at (3,4) a focus is at (3,-1) and the lenght of the major axis is 26 what will be the answer?
Rima
I done know
Joe
What kind of answer is that😑?
Rima
I had just woken up when i got this message
Joe
Can you please help me. Tomorrow is the deadline of my assignment then I don't know how to solve that
Rima
i have a question.
Abdul
how do you find the real and complex roots of a polynomial?
Abdul
@abdul with delta maybe which is b(square)-4ac=result then the 1st root -b-radical delta over 2a and the 2nd root -b+radical delta over 2a. I am not sure if this was your question but check it up
Nare
This is the actual question: Find all roots(real and complex) of the polynomial f(x)=6x^3 + x^2 - 4x + 1
Abdul
@Nare please let me know if you can solve it.
Abdul
I have a question
juweeriya
hello guys I'm new here? will you happy with me
mustapha
The average annual population increase of a pack of wolves is 25.
Period =2π
if there is a coefficient (b), just divide the coefficient by 2π to get the new period
Am
if not then how would I find it from a graph
Imani
by looking at the graph, find the distance between two consecutive maximum points (the highest points of the wave). so if the top of one wave is at point A (1,2) and the next top of the wave is at point B (6,2), then the period is 5, the difference of the x-coordinates.
Am
you could also do it with two consecutive minimum points or x-intercepts