<< Chapter < Page Chapter >> Page >
  • Let b = 1. Then f ( x ) = 1 x = 1 for any value of x .

To evaluate an exponential function with the form f ( x ) = b x , we simply substitute x with the given value, and calculate the resulting power. For example:

Let f ( x ) = 2 x . What is f ( 3 ) ?

f ( x ) = 2 x f ( 3 ) = 2 3   Substitute  x = 3. = 8   Evaluate the power .

To evaluate an exponential function with a form other than the basic form, it is important to follow the order of operations. For example:

Let f ( x ) = 30 ( 2 ) x . What is f ( 3 ) ?

f ( x ) = 30 ( 2 ) x f ( 3 ) = 30 ( 2 ) 3 Substitute  x = 3. = 30 ( 8 )   Simplify the power first . = 240 Multiply .

Note that if the order of operations were not followed, the result would be incorrect:

f ( 3 ) = 30 ( 2 ) 3 60 3 = 216,000

Evaluating exponential functions

Let f ( x ) = 5 ( 3 ) x + 1 . Evaluate f ( 2 ) without using a calculator.

Follow the order of operations. Be sure to pay attention to the parentheses.

f ( x ) = 5 ( 3 ) x + 1 f ( 2 ) = 5 ( 3 ) 2 + 1 Substitute  x = 2. = 5 ( 3 ) 3 Add the exponents . = 5 ( 27 ) Simplify the power . = 135 Multiply .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Let f ( x ) = 8 ( 1.2 ) x 5 . Evaluate f ( 3 ) using a calculator. Round to four decimal places.


Got questions? Get instant answers now!

Defining exponential growth

Because the output of exponential functions increases very rapidly, the term “exponential growth” is often used in everyday language to describe anything that grows or increases rapidly. However, exponential growth can be defined more precisely in a mathematical sense. If the growth rate is proportional to the amount present, the function models exponential growth.

Exponential growth

A function that models exponential growth    grows by a rate proportional to the amount present. For any real number x and any positive real numbers a   and b such that b 1 , an exponential growth function has the form

  f ( x ) = a b x


  • a is the initial or starting value of the function.
  • b is the growth factor or growth multiplier per unit x .

In more general terms, we have an exponential function , in which a constant base is raised to a variable exponent. To differentiate between linear and exponential functions, let’s consider two companies, A and B. Company A has 100 stores and expands by opening 50 new stores a year, so its growth can be represented by the function A ( x ) = 100 + 50 x . Company B has 100 stores and expands by increasing the number of stores by 50% each year, so its growth can be represented by the function B ( x ) = 100 ( 1 + 0.5 ) x .

A few years of growth for these companies are illustrated in [link] .

Year, x Stores, Company A Stores, Company B
0 100 + 50 ( 0 ) = 100 100 ( 1 + 0.5 ) 0 = 100
1 100 + 50 ( 1 ) = 150 100 ( 1 + 0.5 ) 1 = 150
2 100 + 50 ( 2 ) = 200 100 ( 1 + 0.5 ) 2 = 225
3 100 + 50 ( 3 ) = 250 100 ( 1 + 0.5 ) 3 = 337.5
x A ( x ) = 100 + 50 x B ( x ) = 100 ( 1 + 0.5 ) x

The graphs comparing the number of stores for each company over a five-year period are shown in [link] . We can see that, with exponential growth, the number of stores increases much more rapidly than with linear growth.

Graph of Companies A and B’s functions, which values are found in the previous table.
The graph shows the numbers of stores Companies A and B opened over a five-year period.

Notice that the domain for both functions is [ 0 , ) , and the range for both functions is [ 100 , ) . After year 1, Company B always has more stores than Company A.

Now we will turn our attention to the function representing the number of stores for Company B, B ( x ) = 100 ( 1 + 0.5 ) x . In this exponential function, 100 represents the initial number of stores, 0.50 represents the growth rate, and 1 + 0.5 = 1.5 represents the growth factor. Generalizing further, we can write this function as B ( x ) = 100 ( 1.5 ) x , where 100 is the initial value, 1.5 is called the base , and x is called the exponent .

Questions & Answers

what is the domain of f(x)=x-4/x^2-2x-15 then
Conney Reply
x is different from -5&3
how to prroved cos⁴x-sin⁴x= cos²x-sin²x are equal
jeric Reply
Don't think that you can.
how do you provided cos⁴x-sin⁴x = cos²x-sin²x are equal
jeric Reply
What are the question marks for?
Someone should please solve it for me Add 2over ×+3 +y-4 over 5 simplify (×+a)with square root of two -×root 2 all over a multiply 1over ×-y{(×-y)(×+y)} over ×y
Abena Reply
For the first question, I got (3y-2)/15 Second one, I got Root 2 Third one, I got 1/(y to the fourth power) I dont if it's right cause I can barely understand the question.
Is under distribute property, inverse function, algebra and addition and multiplication function; so is a combined question
find the equation of the line if m=3, and b=-2
Ashley Reply
graph the following linear equation using intercepts method. 2x+y=4
ok, one moment
how do I post your graph for you?
it won't let me send an image?
also for the first one... y=mx+b so.... y=3x-2
y=mx+b you were already given the 'm' and 'b'. so.. y=3x-2
Please were did you get y=mx+b from
y=mx+b is the formula of a straight line. where m = the slope & b = where the line crosses the y-axis. In this case, being that the "m" and "b", are given, all you have to do is plug them into the formula to complete the equation.
thanks Tommy
"7"has an open circle and "10"has a filled in circle who can I have a set builder notation
Fiston Reply
x=-b+_Гb2-(4ac) ______________ 2a
Ahlicia Reply
I've run into this: x = r*cos(angle1 + angle2) Which expands to: x = r(cos(angle1)*cos(angle2) - sin(angle1)*sin(angle2)) The r value confuses me here, because distributing it makes: (r*cos(angle2))(cos(angle1) - (r*sin(angle2))(sin(angle1)) How does this make sense? Why does the r distribute once
Carlos Reply
so good
this is an identity when 2 adding two angles within a cosine. it's called the cosine sum formula. there is also a different formula when cosine has an angle minus another angle it's called the sum and difference formulas and they are under any list of trig identities
strategies to form the general term
consider r(a+b) = ra + rb. The a and b are the trig identity.
How can you tell what type of parent function a graph is ?
Mary Reply
generally by how the graph looks and understanding what the base parent functions look like and perform on a graph
if you have a graphed line, you can have an idea by how the directions of the line turns, i.e. negative, positive, zero
y=x will obviously be a straight line with a zero slope
y=x^2 will have a parabolic line opening to positive infinity on both sides of the y axis vice versa with y=-x^2 you'll have both ends of the parabolic line pointing downward heading to negative infinity on both sides of the y axis
y=x will be a straight line, but it will have a slope of one. Remember, if y=1 then x=1, so for every unit you rise you move over positively one unit. To get a straight line with a slope of 0, set y=1 or any integer.
yes, correction on my end, I meant slope of 1 instead of slope of 0
what is f(x)=
Karim Reply
I don't understand
Typically a function 'f' will take 'x' as input, and produce 'y' as output. As 'f(x)=y'. According to Google, "The range of a function is the complete set of all possible resulting values of the dependent variable (y, usually), after we have substituted the domain."
Sorry, I don't know where the "Â"s came from. They shouldn't be there. Just ignore them. :-)
It is the  that should not be there. It doesn't seem to show if encloses in quotation marks. "Â" or 'Â' ... Â
Now it shows, go figure?
what is this?
unknown Reply
i do not understand anything
lol...it gets better
I've been struggling so much through all of this. my final is in four weeks 😭
this book is an excellent resource! have you guys ever looked at the online tutoring? there's one that is called "That Tutor Guy" and he goes over a lot of the concepts
thank you I have heard of him. I should check him out.
is there any question in particular?
I have always struggled with math. I get lost really easy, if you have any advice for that, it would help tremendously.
Sure, are you in high school or college?
Hi, apologies for the delayed response. I'm in college.
how to solve polynomial using a calculator
Ef Reply
So a horizontal compression by factor of 1/2 is the same as a horizontal stretch by a factor of 2, right?
The center is at (3,4) a focus is at (3,-1), and the lenght of the major axis is 26
Rima Reply
The center is at (3,4) a focus is at (3,-1) and the lenght of the major axis is 26 what will be the answer?
I done know
What kind of answer is that😑?
I had just woken up when i got this message
Can you please help me. Tomorrow is the deadline of my assignment then I don't know how to solve that
i have a question.
how do you find the real and complex roots of a polynomial?
@abdul with delta maybe which is b(square)-4ac=result then the 1st root -b-radical delta over 2a and the 2nd root -b+radical delta over 2a. I am not sure if this was your question but check it up
This is the actual question: Find all roots(real and complex) of the polynomial f(x)=6x^3 + x^2 - 4x + 1
@Nare please let me know if you can solve it.
I have a question
hello guys I'm new here? will you happy with me
The average annual population increase of a pack of wolves is 25.
Brittany Reply
Practice Key Terms 4

Get the best Precalculus course in your pocket!

Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?