<< Chapter < Page Chapter >> Page >
  • Let b = 1. Then f ( x ) = 1 x = 1 for any value of x .

To evaluate an exponential function with the form f ( x ) = b x , we simply substitute x with the given value, and calculate the resulting power. For example:

Let f ( x ) = 2 x . What is f ( 3 ) ?

f ( x ) = 2 x f ( 3 ) = 2 3   Substitute  x = 3. = 8   Evaluate the power .

To evaluate an exponential function with a form other than the basic form, it is important to follow the order of operations. For example:

Let f ( x ) = 30 ( 2 ) x . What is f ( 3 ) ?

f ( x ) = 30 ( 2 ) x f ( 3 ) = 30 ( 2 ) 3 Substitute  x = 3. = 30 ( 8 )   Simplify the power first . = 240 Multiply .

Note that if the order of operations were not followed, the result would be incorrect:

f ( 3 ) = 30 ( 2 ) 3 60 3 = 216,000

Evaluating exponential functions

Let f ( x ) = 5 ( 3 ) x + 1 . Evaluate f ( 2 ) without using a calculator.

Follow the order of operations. Be sure to pay attention to the parentheses.

f ( x ) = 5 ( 3 ) x + 1 f ( 2 ) = 5 ( 3 ) 2 + 1 Substitute  x = 2. = 5 ( 3 ) 3 Add the exponents . = 5 ( 27 ) Simplify the power . = 135 Multiply .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Let f ( x ) = 8 ( 1.2 ) x 5 . Evaluate f ( 3 ) using a calculator. Round to four decimal places.

5.5556

Got questions? Get instant answers now!

Defining exponential growth

Because the output of exponential functions increases very rapidly, the term “exponential growth” is often used in everyday language to describe anything that grows or increases rapidly. However, exponential growth can be defined more precisely in a mathematical sense. If the growth rate is proportional to the amount present, the function models exponential growth.

Exponential growth

A function that models exponential growth    grows by a rate proportional to the amount present. For any real number x and any positive real numbers a   and b such that b 1 , an exponential growth function has the form

  f ( x ) = a b x

where

  • a is the initial or starting value of the function.
  • b is the growth factor or growth multiplier per unit x .

In more general terms, we have an exponential function , in which a constant base is raised to a variable exponent. To differentiate between linear and exponential functions, let’s consider two companies, A and B. Company A has 100 stores and expands by opening 50 new stores a year, so its growth can be represented by the function A ( x ) = 100 + 50 x . Company B has 100 stores and expands by increasing the number of stores by 50% each year, so its growth can be represented by the function B ( x ) = 100 ( 1 + 0.5 ) x .

A few years of growth for these companies are illustrated in [link] .

Year, x Stores, Company A Stores, Company B
0 100 + 50 ( 0 ) = 100 100 ( 1 + 0.5 ) 0 = 100
1 100 + 50 ( 1 ) = 150 100 ( 1 + 0.5 ) 1 = 150
2 100 + 50 ( 2 ) = 200 100 ( 1 + 0.5 ) 2 = 225
3 100 + 50 ( 3 ) = 250 100 ( 1 + 0.5 ) 3 = 337.5
x A ( x ) = 100 + 50 x B ( x ) = 100 ( 1 + 0.5 ) x

The graphs comparing the number of stores for each company over a five-year period are shown in [link] . We can see that, with exponential growth, the number of stores increases much more rapidly than with linear growth.

Graph of Companies A and B’s functions, which values are found in the previous table.
The graph shows the numbers of stores Companies A and B opened over a five-year period.

Notice that the domain for both functions is [ 0 , ) , and the range for both functions is [ 100 , ) . After year 1, Company B always has more stores than Company A.

Now we will turn our attention to the function representing the number of stores for Company B, B ( x ) = 100 ( 1 + 0.5 ) x . In this exponential function, 100 represents the initial number of stores, 0.50 represents the growth rate, and 1 + 0.5 = 1.5 represents the growth factor. Generalizing further, we can write this function as B ( x ) = 100 ( 1.5 ) x , where 100 is the initial value, 1.5 is called the base , and x is called the exponent .

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask