<< Chapter < Page Chapter >> Page >

The point ( 2 2 , 2 2 ) is on the unit circle, as shown in [link] . Find sin t , cos t , tan t , sec t , csc t , and cot t .

This is an image of a graph of circle with angle of t inscribed with radius 1. Point of (square root of 2 over 2, negative square root of 2 over 2) is at intersection of terminal side of angle and edge of circle.

sin t = 2 2 , cos t = 2 2 , tan t = 1 , s e c t = 2 , csc t = 2 , cot t = 1

Got questions? Get instant answers now!

Finding the trigonometric functions of an angle

Find sin t , cos t , tan t , sec t , csc t , and cot t . when t = π 6 .

We have previously used the properties of equilateral triangles to demonstrate that sin π 6 = 1 2 and cos π 6 = 3 2 . We can use these values and the definitions of tangent, secant, cosecant, and cotangent as functions of sine and cosine to find the remaining function values.

tan π 6 = sin π 6 cos π 6 = 1 2 3 2 = 1 3 = 3 3 sec π 6 = 1 cos π 6 = 1 3 2 = 2 3 = 2 3 3 csc π 6 = 1 sin π 6 = 1 1 2 = 2 cot π 6 = cos π 6 sin π 6 = 3 2 1 2 = 3
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find sin t , cos t , tan t , sec t , csc t , and cot t . when t = π 3 .

sin π 3 = 3 2 cos π 3 = 1 2 tan π 3 = 3 sec π 3 = 2 csc π 3 = 2 3 3 cot π 3 = 3 3

Got questions? Get instant answers now!

Because we know the sine and cosine values for the common first-quadrant angles, we can find the other function values for those angles as well by setting x equal to the cosine and y equal to the sine and then using the definitions of tangent, secant, cosecant, and cotangent. The results are shown in [link] .

Angle 0 π 6 , or 30° π 4 , or 45° π 3 , or 60° π 2 , or 90°
Cosine 1 3 2 2 2 1 2 0
Sine 0 1 2 2 2 3 2 1
Tangent 0 3 3 1 3 Undefined
Secant 1 2 3 3 2 2 Undefined
Cosecant Undefined 2 2 2 3 3 1
Cotangent Undefined 3 1 3 3 0

Using reference angles to evaluate tangent, secant, cosecant, and cotangent

We can evaluate trigonometric functions of angles outside the first quadrant using reference angles as we have already done with the sine and cosine functions. The procedure is the same: Find the reference angle    formed by the terminal side of the given angle with the horizontal axis. The trigonometric function values for the original angle will be the same as those for the reference angle, except for the positive or negative sign, which is determined by x - and y -values in the original quadrant. [link] shows which functions are positive in which quadrant.

To help remember which of the six trigonometric functions are positive in each quadrant, we can use the mnemonic phrase “A Smart Trig Class.” Each of the four words in the phrase corresponds to one of the four quadrants, starting with quadrant I and rotating counterclockwise. In quadrant I, which is “ A ,” a ll of the six trigonometric functions are positive. In quadrant II, “ S mart,” only s ine and its reciprocal function, cosecant, are positive. In quadrant III, “ T rig,” only t angent and its reciprocal function, cotangent, are positive. Finally, in quadrant IV, “ C lass,” only c osine and its reciprocal function, secant, are positive.

This image is a graph of circle with each quadrant labeled. Under quadrant I, labels for sin t, cos t, tan t, sec t, csc t, and cot t. Under quadrant II, labels for sin t and csc t. Under quadrant III, labels for tan t and cot t. Under quadrant IV, labels for cos t, sec t.
The trigonometric functions are each listed in the quadrants in which they are positive.

Given an angle not in the first quadrant, use reference angles to find all six trigonometric functions.

  1. Measure the angle formed by the terminal side of the given angle and the horizontal axis. This is the reference angle.
  2. Evaluate the function at the reference angle.
  3. Observe the quadrant where the terminal side of the original angle is located. Based on the quadrant, determine whether the output is positive or negative.

Using reference angles to find trigonometric functions

Use reference angles to find all six trigonometric functions of 5 π 6 .

The angle between this angle’s terminal side and the x -axis is π 6 , so that is the reference angle. Since 5 π 6 is in the third quadrant, where both x and y are negative, cosine, sine, secant, and cosecant will be negative, while tangent and cotangent will be positive.

cos ( 5 π 6 ) = 3 2 , sin ( 5 π 6 ) = 1 2 , tan ( 5 π 6 ) = 3 3 , sec ( 5 π 6 ) = 2 3 3 , csc ( 5 π 6 ) = −2 , cot ( 5 π 6 ) = 3

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
Kaitlyn Reply
The sequence is {1,-1,1-1.....} has
amit Reply
circular region of radious
Kainat Reply
how can we solve this problem
Joel Reply
Sin(A+B) = sinBcosA+cosBsinA
Eseka Reply
Prove it
Eseka
Please prove it
Eseka
hi
Joel
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
Arleathia Reply
7.5 and 37.5
Nando
find the sum of 28th term of the AP 3+10+17+---------
Prince Reply
I think you should say "28 terms" instead of "28th term"
Vedant
the 28th term is 175
Nando
192
Kenneth
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n
SANDESH Reply
write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
Practice Key Terms 6

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask