# 6.2 Graphs of exponential functions

 Â  Â  Page 1 / 6
• Graph exponential functions.
• Graph exponential functions using transformations.

As we discussed in the previous section, exponential functions are used for many real-world applications such as finance, forensics, computer science, and most of the life sciences. Working with an equation that describes a real-world situation gives us a method for making predictions. Most of the time, however, the equation itself is not enough. We learn a lot about things by seeing their pictorial representations, and that is exactly why graphing exponential equations is a powerful tool. It gives us another layer of insight for predicting future events.

## Graphing exponential functions

Before we begin graphing, it is helpful to review the behavior of exponential growth. Recall the table of values for a function of the form $\text{\hspace{0.17em}}f\left(x\right)={b}^{x}\text{\hspace{0.17em}}$ whose base is greater than one. We’ll use the function $\text{\hspace{0.17em}}f\left(x\right)={2}^{x}.\text{\hspace{0.17em}}$ Observe how the output values in [link] change as the input increases by $\text{\hspace{0.17em}}1.$

 $x$ $-3$ $-2$ $-1$ $0$ $1$ $2$ $3$ $f\left(x\right)={2}^{x}$ $\frac{1}{8}$ $\frac{1}{4}$ $\frac{1}{2}$ $1$ $2$ $4$ $8$

Each output value is the product of the previous output and the base, $\text{\hspace{0.17em}}2.\text{\hspace{0.17em}}$ We call the base $\text{\hspace{0.17em}}2\text{\hspace{0.17em}}$ the constant ratio . In fact, for any exponential function with the form $\text{\hspace{0.17em}}f\left(x\right)=a{b}^{x},$ $\text{\hspace{0.17em}}b\text{\hspace{0.17em}}$ is the constant ratio of the function. This means that as the input increases by 1, the output value will be the product of the base and the previous output, regardless of the value of $\text{\hspace{0.17em}}a.$

Notice from the table that

• the output values are positive for all values of $x;$
• as $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ increases, the output values increase without bound; and
• as $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ decreases, the output values grow smaller, approaching zero.

[link] shows the exponential growth function $\text{\hspace{0.17em}}f\left(x\right)={2}^{x}.$

The domain of $\text{\hspace{0.17em}}f\left(x\right)={2}^{x}\text{\hspace{0.17em}}$ is all real numbers, the range is $\text{\hspace{0.17em}}\left(0,\infty \right),$ and the horizontal asymptote is $\text{\hspace{0.17em}}y=0.$

To get a sense of the behavior of exponential decay , we can create a table of values for a function of the form $\text{\hspace{0.17em}}f\left(x\right)={b}^{x}\text{\hspace{0.17em}}$ whose base is between zero and one. We’ll use the function $\text{\hspace{0.17em}}g\left(x\right)={\left(\frac{1}{2}\right)}^{x}.\text{\hspace{0.17em}}$ Observe how the output values in [link] change as the input increases by $\text{\hspace{0.17em}}1.$

 $x$ $-3$ $-2$ $-1$ $0$ $1$ $2$ $3$ $g\left(x\right)=\left(\frac{1}{2}{\right)}^{x}$ $8$ $4$ $2$ $1$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{8}$

Again, because the input is increasing by 1, each output value is the product of the previous output and the base, or constant ratio $\text{\hspace{0.17em}}\frac{1}{2}.$

Notice from the table that

• the output values are positive for all values of $\text{\hspace{0.17em}}x;$
• as $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ increases, the output values grow smaller, approaching zero; and
• as $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ decreases, the output values grow without bound.

[link] shows the exponential decay function, $\text{\hspace{0.17em}}g\left(x\right)={\left(\frac{1}{2}\right)}^{x}.$

The domain of $\text{\hspace{0.17em}}g\left(x\right)={\left(\frac{1}{2}\right)}^{x}\text{\hspace{0.17em}}$ is all real numbers, the range is $\text{\hspace{0.17em}}\left(0,\infty \right),$ and the horizontal asymptote is $\text{\hspace{0.17em}}y=0.$

## Characteristics of the graph of the parent function f ( x ) = b x

An exponential function with the form $\text{\hspace{0.17em}}f\left(x\right)={b}^{x},$ $\text{\hspace{0.17em}}b>0,$ $\text{\hspace{0.17em}}b\ne 1,$ has these characteristics:

• one-to-one function
• horizontal asymptote: $\text{\hspace{0.17em}}y=0$
• domain:
• range: $\text{\hspace{0.17em}}\left(0,\infty \right)$
• x- intercept: none
• y- intercept: $\text{\hspace{0.17em}}\left(0,1\right)\text{\hspace{0.17em}}$
• increasing if $\text{\hspace{0.17em}}b>1$
• decreasing if $\text{\hspace{0.17em}}b<1$

[link] compares the graphs of exponential growth    and decay functions.

Given an exponential function of the form $\text{\hspace{0.17em}}f\left(x\right)={b}^{x},$ graph the function.

1. Create a table of points.
2. Plot at least $\text{\hspace{0.17em}}3\text{\hspace{0.17em}}$ point from the table, including the y -intercept $\text{\hspace{0.17em}}\left(0,1\right).$
3. Draw a smooth curve through the points.
4. State the domain, $\text{\hspace{0.17em}}\left(-\infty ,\infty \right),$ the range, $\text{\hspace{0.17em}}\left(0,\infty \right),$ and the horizontal asymptote, $\text{\hspace{0.17em}}y=0.$

#### Questions & Answers

write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65Â°) b)sin(-180Â°)c)tan(225Â°)d)tan(135Â°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
the polar co-ordinate of the point (-1, -1)
Sumit Reply
prove the identites sin x ( 1+ tan x )+ cos x ( 1+ cot x )= sec x + cosec x
Rockstar Reply
tanh`(x-iy) =A+iB, find A and B
Pankaj Reply
B=Ai-itan(hx-hiy)
Rukmini
what is the addition of 101011 with 101010
Branded Reply
If those numbers are binary, it's 1010101. If they are base 10, it's 202021.
Jack
extra power 4 minus 5 x cube + 7 x square minus 5 x + 1 equal to zero
archana Reply
the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
Kc Reply
1+cosÂ²A/cosÂ²A=2cosecÂ²A-1
Ramesh Reply
test for convergence the series 1+x/2+2!/9x3
success Reply

### Read also:

#### Get the best Algebra and trigonometry course in your pocket!

Source:Â  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

 By By By