# 4.1 Linear functions  (Page 15/27)

 Page 15 / 27

If the graphs of two linear functions are perpendicular, describe the relationship between the slopes and the y -intercepts.

If a horizontal line has the equation $\text{\hspace{0.17em}}f\left(x\right)=a\text{\hspace{0.17em}}$ and a vertical line has the equation $\text{\hspace{0.17em}}x=a,\text{\hspace{0.17em}}$ what is the point of intersection? Explain why what you found is the point of intersection.

The point of intersection is This is because for the horizontal line, all of the $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ coordinates are $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ and for the vertical line, all of the $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ coordinates are $\text{\hspace{0.17em}}a.\text{\hspace{0.17em}}$ The point of intersection is on both lines and therefore will have these two characteristics.

## Algebraic

For the following exercises, determine whether the equation of the curve can be written as a linear function.

$y=\frac{1}{4}x+6$

$y=3x-5$

Yes

$y=3{x}^{2}-2$

$3x+5y=15$

Yes

$3{x}^{2}+5y=15$

$3x+5{y}^{2}=15$

No

$-2{x}^{2}+3{y}^{2}=6$

$-\frac{x-3}{5}=2y$

Yes

For the following exercises, determine whether each function is increasing or decreasing.

$f\left(x\right)=4x+3$

$g\left(x\right)=5x+6$

Increasing

$a\left(x\right)=5-2x$

$b\left(x\right)=8-3x$

Decreasing

$h\left(x\right)=-2x+4$

$k\left(x\right)=-4x+1$

Decreasing

$j\left(x\right)=\frac{1}{2}x-3$

$p\left(x\right)=\frac{1}{4}x-5$

Increasing

$n\left(x\right)=-\frac{1}{3}x-2$

$m\left(x\right)=-\frac{3}{8}x+3$

Decreasing

For the following exercises, find the slope of the line that passes through the two given points.

$\left(2,4\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(4,\text{10}\right)$

$\left(1,\text{5}\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(4,\text{11}\right)$

2

$\left(–1,\text{4}\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(5,\text{2}\right)$

$\left(8,–2\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(4,6\right)$

–2

$\left(6,11\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(–4,\text{3}\right)$

For the following exercises, given each set of information, find a linear equation satisfying the conditions, if possible.

$f\left(-5\right)=-4,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}f\left(5\right)=2$

$y=\frac{3}{5}x-1$

$f\left(-1\right)=4,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}f\left(5\right)=1$

Passes through $\text{\hspace{0.17em}}\left(2,4\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(4,10\right)$

$y=3x-2$

Passes through $\text{\hspace{0.17em}}\left(1,5\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(4,11\right)$

Passes through $\text{\hspace{0.17em}}\left(-1,\text{4}\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(5,\text{2}\right)$

$y=-\frac{1}{3}x+\frac{11}{3}$

Passes through $\text{\hspace{0.17em}}\left(-2,\text{8}\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(4,\text{6}\right)$

x intercept at $\text{\hspace{0.17em}}\left(-2,\text{0}\right)\text{\hspace{0.17em}}$ and y intercept at $\text{\hspace{0.17em}}\left(0,-3\right)$

$y=-1.5x-3$

x intercept at $\text{\hspace{0.17em}}\left(-5,\text{0}\right)\text{\hspace{0.17em}}$ and y intercept at $\text{\hspace{0.17em}}\left(0,\text{4}\right)$

For the following exercises, determine whether the lines given by the equations below are parallel, perpendicular, or neither.

$\begin{array}{l}4x-7y=10\hfill \\ 7x+4y=1\hfill \end{array}$

perpendicular

$\begin{array}{c}3y+x=12\\ -y=8x+1\end{array}$

$\begin{array}{c}3y+4x=12\\ -6y=8x+1\end{array}$

parallel

$\begin{array}{l}6x-9y=10\hfill \\ 3x+2y=1\hfill \end{array}$

For the following exercises, find the x - and y- intercepts of each equation.

$f\left(x\right)=-x+2$

$\begin{array}{l}f\left(0\right)=-\left(0\right)+2\\ f\left(0\right)=2\\ y-\mathrm{int}:\left(0,2\right)\\ 0=-x+2\\ x-\mathrm{int}:\left(2,0\right)\end{array}$

$g\left(x\right)=2x+4$

$h\left(x\right)=3x-5$

$\begin{array}{l}h\left(0\right)=3\left(0\right)-5\\ h\left(0\right)=-5\\ y-\mathrm{int}:\left(0,-5\right)\\ 0=3x-5\\ x-\mathrm{int}:\left(\frac{5}{3},0\right)\end{array}$

$k\left(x\right)=-5x+1$

$-2x+5y=20$

$\begin{array}{l}-2x+5y=20\\ -2\left(0\right)+5y=20\\ 5y=20\\ y=4\\ y-\mathrm{int}:\left(0,4\right)\\ -2x+5\left(0\right)=20\\ x=-10\\ x-\mathrm{int}:\left(-10,0\right)\end{array}$

$7x+2y=56$

For the following exercises, use the descriptions of each pair of lines given below to find the slopes of Line 1 and Line 2. Is each pair of lines parallel, perpendicular, or neither?

Line 1: Passes through $\text{\hspace{0.17em}}\left(0,6\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(3,-24\right)$

Line 2: Passes through $\text{\hspace{0.17em}}\left(-1,19\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(8,-71\right)$

Line 1: m = –10 Line 2: m = –10 Parallel

Line 1: Passes through $\text{\hspace{0.17em}}\left(-8,-55\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(10,89\right)$

Line 2: Passes through $\text{\hspace{0.17em}}\left(9,-44\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(4,-14\right)$

Line 1: Passes through $\text{\hspace{0.17em}}\left(2,3\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(4,-1\right)$

Line 2: Passes through $\text{\hspace{0.17em}}\left(6,3\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(8,5\right)$

Line 1: m = –2 Line 2: m = 1 Neither

Line 1: Passes through $\text{\hspace{0.17em}}\left(1,7\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(5,5\right)$

Line 2: Passes through $\text{\hspace{0.17em}}\left(-1,-3\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(1,1\right)$

Line 1: Passes through $\text{\hspace{0.17em}}\left(2,5\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(5,-1\right)$

Line 2: Passes through $\text{\hspace{0.17em}}\left(-3,7\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(3,-5\right)$

For the following exercises, write an equation for the line described.

Write an equation for a line parallel to $\text{\hspace{0.17em}}f\left(x\right)=-5x-3\text{\hspace{0.17em}}$ and passing through the point $\text{\hspace{0.17em}}\left(2,\text{–}12\right).$

Write an equation for a line parallel to $\text{\hspace{0.17em}}g\left(x\right)=3x-1\text{\hspace{0.17em}}$ and passing through the point $\text{\hspace{0.17em}}\left(4,9\right).$

$y=3x-3$

the third and the seventh terms of a G.P are 81 and 16, find the first and fifth terms.
if a=3, b =4 and c=5 find the six trigonometric value sin
pls how do I factorize x⁴+x³-7x²-x+6=0
in a function the input value is called
how do I test for values on the number line
if a=4 b=4 then a+b=
a+b+2ab
Kin
commulative principle
a+b= 4+4=8
Mimi
If a=4 and b=4 then we add the value of a and b i.e a+b=4+4=8.
Tariq
what are examples of natural number
an equation for the line that goes through the point (-1,12) and has a slope of 2,3
3y=-9x+25
Ishaq
show that the set of natural numberdoes not from agroup with addition or multiplication butit forms aseni group with respect toaaddition as well as multiplication
x^20+x^15+x^10+x^5/x^2+1
evaluate each algebraic expression. 2x+×_2 if ×=5
if the ratio of the root of ax+bx+c =0, show that (m+1)^2 ac =b^2m
By the definition, is such that 0!=1.why?
(1+cosA+IsinA)(1+cosB+isinB)/(cos@+isin@)(cos$+isin$)
hatdog
Mark
jaks
Ryan
how we can draw three triangles of distinctly different shapes. All the angles will be cutt off each triangle and placed side by side with vertices touching