<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Determine whether a relation represents a function.
  • Find the value of a function.
  • Determine whether a function is one-to-one.
  • Use the vertical line test to identify functions.
  • Graph the functions listed in the library of functions.

A jetliner changes altitude as its distance from the starting point of a flight increases. The weight of a growing child increases with time. In each case, one quantity depends on another. There is a relationship between the two quantities that we can describe, analyze, and use to make predictions. In this section, we will analyze such relationships.

Determining whether a relation represents a function

A relation    is a set of ordered pairs. The set consisting of the first components of each ordered pair    is called the domain and the set consisting of the second components of each ordered pair is called the range . Consider the following set of ordered pairs. The first numbers in each pair are the first five natural numbers. The second number in each pair is twice that of the first.

{ ( 1 , 2 ) , ( 2 , 4 ) , ( 3 , 6 ) , ( 4 , 8 ) , ( 5 , 10 ) }

The domain is { 1 , 2 , 3 , 4 , 5 } . The range is { 2 , 4 , 6 , 8 , 10 } .

Note that each value in the domain is also known as an input value, or independent variable    , and is often labeled with the lowercase letter x . Each value in the range is also known as an output value, or dependent variable    , and is often labeled lowercase letter y .

A function f is a relation that assigns a single element in the range to each element in the domain . In other words, no x -values are repeated. For our example that relates the first five natural numbers    to numbers double their values, this relation is a function because each element in the domain, { 1 , 2 , 3 , 4 , 5 } , is paired with exactly one element in the range, { 2 , 4 , 6 , 8 , 10 } .

Now let’s consider the set of ordered pairs that relates the terms “even” and “odd” to the first five natural numbers. It would appear as

{ ( odd , 1 ) , ( even , 2 ) , ( odd , 3 ) , ( even , 4 ) , ( odd , 5 ) }

Notice that each element in the domain, { even, odd } is not paired with exactly one element in the range, { 1 , 2 , 3 , 4 , 5 } . For example, the term “odd” corresponds to three values from the domain, { 1 , 3 , 5 } and the term “even” corresponds to two values from the range, { 2 , 4 } . This violates the definition of a function, so this relation is not a function.

[link] compares relations that are functions and not functions.

Three relations that demonstrate what constitute a function.
(a) This relationship is a function because each input is associated with a single output. Note that input q and r both give output n . (b) This relationship is also a function. In this case, each input is associated with a single output. (c) This relationship is not a function because input q is associated with two different outputs.

Function

A function    is a relation in which each possible input value leads to exactly one output value. We say “the output is a function of the input.”

The input    values make up the domain    , and the output    values make up the range    .

Given a relationship between two quantities, determine whether the relationship is a function.

  1. Identify the input values.
  2. Identify the output values.
  3. If each input value leads to only one output value, classify the relationship as a function. If any input value leads to two or more outputs, do not classify the relationship as a function.

Questions & Answers

A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
Kaitlyn Reply
The sequence is {1,-1,1-1.....} has
amit Reply
circular region of radious
Kainat Reply
how can we solve this problem
Joel Reply
Sin(A+B) = sinBcosA+cosBsinA
Eseka Reply
Prove it
Eseka
Please prove it
Eseka
hi
Joel
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
Arleathia Reply
7.5 and 37.5
Nando
find the sum of 28th term of the AP 3+10+17+---------
Prince Reply
I think you should say "28 terms" instead of "28th term"
Vedant
the 28th term is 175
Nando
192
Kenneth
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n
SANDESH Reply
write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask