<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Identify nondegenerate conic sections given their general form equations.
  • Use rotation of axes formulas.
  • Write equations of rotated conics in standard form.
  • Identify conics without rotating axes.

As we have seen, conic sections are formed when a plane intersects two right circular cones aligned tip to tip and extending infinitely far in opposite directions, which we also call a cone . The way in which we slice the cone will determine the type of conic section formed at the intersection. A circle is formed by slicing a cone with a plane perpendicular to the axis of symmetry of the cone. An ellipse is formed by slicing a single cone with a slanted plane not perpendicular to the axis of symmetry. A parabola is formed by slicing the plane through the top or bottom of the double-cone, whereas a hyperbola is formed when the plane slices both the top and bottom of the cone. See [link] .

The nondegenerate conic sections

Ellipses, circles, hyperbolas, and parabolas are sometimes called the nondegenerate conic sections , in contrast to the degenerate conic sections    , which are shown in [link] . A degenerate conic results when a plane intersects the double cone and passes through the apex. Depending on the angle of the plane, three types of degenerate conic sections are possible: a point, a line, or two intersecting lines.

Degenerate conic sections

Identifying nondegenerate conics in general form

In previous sections of this chapter, we have focused on the standard form equations for nondegenerate conic sections. In this section, we will shift our focus to the general form equation, which can be used for any conic. The general form is set equal to zero, and the terms and coefficients are given in a particular order, as shown below.

A x 2 + B x y + C y 2 + D x + E y + F = 0

where A , B , and C are not all zero. We can use the values of the coefficients to identify which type conic is represented by a given equation.

You may notice that the general form equation has an x y term that we have not seen in any of the standard form equations. As we will discuss later, the x y term rotates the conic whenever   B   is not equal to zero.

Conic Sections Example
ellipse 4 x 2 + 9 y 2 = 1
circle 4 x 2 + 4 y 2 = 1
hyperbola 4 x 2 9 y 2 = 1
parabola 4 x 2 = 9 y  or  4 y 2 = 9 x
one line 4 x + 9 y = 1
intersecting lines ( x 4 ) ( y + 4 ) = 0
parallel lines ( x 4 ) ( x 9 ) = 0
a point 4 x 2 + 4 y 2 = 0
no graph 4 x 2 + 4 y 2 = 1

General form of conic sections

A conic section    has the general form

A x 2 + B x y + C y 2 + D x + E y + F = 0

where A , B , and C are not all zero.

[link] summarizes the different conic sections where B = 0 , and A and C are nonzero real numbers. This indicates that the conic has not been rotated.

ellipse A x 2 + C y 2 + D x + E y + F = 0 ,   A C  and  A C > 0
circle A x 2 + C y 2 + D x + E y + F = 0 ,   A = C
hyperbola A x 2 C y 2 + D x + E y + F = 0  or  A x 2 + C y 2 + D x + E y + F = 0 , where A and C are positive
parabola A x 2 + D x + E y + F = 0  or  C y 2 + D x + E y + F = 0

Given the equation of a conic, identify the type of conic.

  1. Rewrite the equation in the general form, A x 2 + B x y + C y 2 + D x + E y + F = 0.
  2. Identify the values of A and C from the general form.
    1. If A and C are nonzero, have the same sign, and are not equal to each other, then the graph may be an ellipse.
    2. If A and C are equal and nonzero and have the same sign, then the graph may be a circle.
    3. If A and C are nonzero and have opposite signs, then the graph may be a hyperbola.
    4. If either A or C is zero, then the graph may be a parabola.

    If B = 0, the conic section will have a vertical and/or horizontal axes. If B does not equal 0, as shown below, the conic section is rotated. Notice the phrase “may be” in the definitions. That is because the equation may not represent a conic section at all, depending on the values of A , B , C , D , E , and F . For example, the degenerate case of a circle or an ellipse is a point:
    A x 2 + B y 2 = 0 , when A and B have the same sign.
    The degenerate case of a hyperbola is two intersecting straight lines: A x 2 + B y 2 = 0 , when A and B have opposite signs.
    On the other hand, the equation, A x 2 + B y 2 + 1 = 0 , when A and B are positive does not represent a graph at all, since there are no real ordered pairs which satisfy it.

Questions & Answers

A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
Kaitlyn Reply
The sequence is {1,-1,1-1.....} has
amit Reply
circular region of radious
Kainat Reply
how can we solve this problem
Joel Reply
Sin(A+B) = sinBcosA+cosBsinA
Eseka Reply
Prove it
Please prove it
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
Arleathia Reply
7.5 and 37.5
find the sum of 28th term of the AP 3+10+17+---------
Prince Reply
I think you should say "28 terms" instead of "28th term"
the 28th term is 175
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n
write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
Practice Key Terms 3

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?