<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Write the augmented matrix of a system of equations.
  • Write the system of equations from an augmented matrix.
  • Perform row operations on a matrix.
  • Solve a system of linear equations using matrices.
German mathematician Carl Friedrich Gauss (1777–1855).

Carl Friedrich Gauss lived during the late 18th century and early 19th century, but he is still considered one of the most prolific mathematicians in history. His contributions to the science of mathematics and physics span fields such as algebra, number theory, analysis, differential geometry, astronomy, and optics, among others. His discoveries regarding matrix theory changed the way mathematicians have worked for the last two centuries.

We first encountered Gaussian elimination in Systems of Linear Equations: Two Variables . In this section, we will revisit this technique for solving systems, this time using matrices.

Writing the augmented matrix of a system of equations

A matrix    can serve as a device for representing and solving a system of equations. To express a system in matrix form, we extract the coefficients of the variables and the constants, and these become the entries of the matrix. We use a vertical line to separate the coefficient entries from the constants, essentially replacing the equal signs. When a system is written in this form, we call it an augmented matrix    .

For example, consider the following 2 × 2 system of equations.

3 x + 4 y = 7 4 x −2 y = 5

We can write this system as an augmented matrix:

[ 3 4 4 −2    |    7 5 ]

We can also write a matrix containing just the coefficients. This is called the coefficient matrix    .

[ 3 4 4 −2 ]

A three-by-three system of equations such as

3 x y z = 0          x + y = 5      2 x −3 z = 2

has a coefficient matrix

[ 3 −1 −1 1 1 0 2 0 −3 ]

and is represented by the augmented matrix

[ 3 −1 −1 1 1 0 2 0 −3    |    0 5 2 ]

Notice that the matrix is written so that the variables line up in their own columns: x -terms go in the first column, y -terms in the second column, and z -terms in the third column. It is very important that each equation is written in standard form a x + b y + c z = d so that the variables line up. When there is a missing variable term in an equation, the coefficient is 0.

Given a system of equations, write an augmented matrix.

  1. Write the coefficients of the x -terms as the numbers down the first column.
  2. Write the coefficients of the y -terms as the numbers down the second column.
  3. If there are z -terms, write the coefficients as the numbers down the third column.
  4. Draw a vertical line and write the constants to the right of the line.

Writing the augmented matrix for a system of equations

Write the augmented matrix for the given system of equations.

    x + 2 y z = 3   2 x y + 2 z = 6    x 3 y + 3 z = 4

The augmented matrix displays the coefficients of the variables, and an additional column for the constants.

[ 1 2 −1 2 −1 2 1 −3 3    |    3 6 4 ]
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Write the augmented matrix of the given system of equations.

4 x −3 y = 11 3 x + 2 y = 4

[ 4 −3 3 2 | 11 4 ]

Got questions? Get instant answers now!

Writing a system of equations from an augmented matrix

We can use augmented matrices to help us solve systems of equations because they simplify operations when the systems are not encumbered by the variables. However, it is important to understand how to move back and forth between formats in order to make finding solutions smoother and more intuitive. Here, we will use the information in an augmented matrix to write the system of equations in standard form.

Questions & Answers

A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
Kaitlyn Reply
The sequence is {1,-1,1-1.....} has
amit Reply
circular region of radious
Kainat Reply
how can we solve this problem
Joel Reply
Sin(A+B) = sinBcosA+cosBsinA
Eseka Reply
Prove it
Please prove it
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
Arleathia Reply
7.5 and 37.5
find the sum of 28th term of the AP 3+10+17+---------
Prince Reply
I think you should say "28 terms" instead of "28th term"
the 28th term is 175
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n
write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
Practice Key Terms 7

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?