10.6 Parametric equations  (Page 5/6)

 Page 5 / 6

Verbal

What is a system of parametric equations?

A pair of functions that is dependent on an external factor. The two functions are written in terms of the same parameter. For example, $\text{\hspace{0.17em}}x=f\left(t\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}y=f\left(t\right).$

Some examples of a third parameter are time, length, speed, and scale. Explain when time is used as a parameter.

Explain how to eliminate a parameter given a set of parametric equations.

Choose one equation to solve for $\text{\hspace{0.17em}}t,\text{\hspace{0.17em}}$ substitute into the other equation and simplify.

What is a benefit of writing a system of parametric equations as a Cartesian equation?

What is a benefit of using parametric equations?

Some equations cannot be written as functions, like a circle. However, when written as two parametric equations, separately the equations are functions.

Why are there many sets of parametric equations to represent on Cartesian function?

Algebraic

For the following exercises, eliminate the parameter $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ to rewrite the parametric equation as a Cartesian equation.

$\left\{\begin{array}{l}x\left(t\right)=5-t\hfill \\ y\left(t\right)=8-2t\hfill \end{array}$

$y=-2+2x$

$\left\{\begin{array}{l}x\left(t\right)=6-3t\hfill \\ y\left(t\right)=10-t\hfill \end{array}$

$\left\{\begin{array}{l}x\left(t\right)=2t+1\hfill \\ y\left(t\right)=3\sqrt{t}\hfill \end{array}$

$y=3\sqrt{\frac{x-1}{2}}$

$\left\{\begin{array}{l}x\left(t\right)=3t-1\hfill \\ y\left(t\right)=2{t}^{2}\hfill \end{array}$

$\left\{\begin{array}{l}x\left(t\right)=2{e}^{t}\hfill \\ y\left(t\right)=1-5t\hfill \end{array}$

$x=2{e}^{\frac{1-y}{5}}\text{\hspace{0.17em}}$ or $\text{\hspace{0.17em}}y=1-5ln\left(\frac{x}{2}\right)$

$\left\{\begin{array}{l}x\left(t\right)={e}^{-2t}\hfill \\ y\left(t\right)=2{e}^{-t}\hfill \end{array}$

$\left\{\begin{array}{l}x\left(t\right)=4\text{log}\left(t\right)\hfill \\ y\left(t\right)=3+2t\hfill \end{array}$

$x=4\mathrm{log}\left(\frac{y-3}{2}\right)$

$\left\{\begin{array}{l}x\left(t\right)=\text{log}\left(2t\right)\hfill \\ y\left(t\right)=\sqrt{t-1}\hfill \end{array}$

$\left\{\begin{array}{l}x\left(t\right)={t}^{3}-t\hfill \\ y\left(t\right)=2t\hfill \end{array}$

$x={\left(\frac{y}{2}\right)}^{3}-\frac{y}{2}$

$\left\{\begin{array}{l}x\left(t\right)=t-{t}^{4}\hfill \\ y\left(t\right)=t+2\hfill \end{array}$

$\left\{\begin{array}{l}x\left(t\right)={e}^{2t}\hfill \\ y\left(t\right)={e}^{6t}\hfill \end{array}$

$y={x}^{3}$

$\left\{\begin{array}{l}x\left(t\right)={t}^{5}\hfill \\ y\left(t\right)={t}^{10}\hfill \end{array}$

${\left(\frac{x}{4}\right)}^{2}+{\left(\frac{y}{5}\right)}^{2}=1$

$\left\{\begin{array}{l}x\left(t\right)=3\mathrm{sin}\text{\hspace{0.17em}}t\hfill \\ y\left(t\right)=6\mathrm{cos}\text{\hspace{0.17em}}t\hfill \end{array}$

${y}^{2}=1-\frac{1}{2}x$

$\left\{\begin{array}{l}x\left(t\right)=\mathrm{cos}\text{\hspace{0.17em}}t+4\\ y\left(t\right)=2{\mathrm{sin}}^{2}t\end{array}$

$\left\{\begin{array}{l}x\left(t\right)=t-1\\ y\left(t\right)={t}^{2}\end{array}$

$y={x}^{2}+2x+1$

$\left\{\begin{array}{l}x\left(t\right)=-t\\ y\left(t\right)={t}^{3}+1\end{array}$

$\left\{\begin{array}{l}x\left(t\right)=2t-1\\ y\left(t\right)={t}^{3}-2\end{array}$

$y={\left(\frac{x+1}{2}\right)}^{3}-2$

For the following exercises, rewrite the parametric equation as a Cartesian equation by building an $x\text{-}y$ table.

$\left\{\begin{array}{l}x\left(t\right)=2t-1\\ y\left(t\right)=t+4\end{array}$

$\left\{\begin{array}{l}x\left(t\right)=4-t\\ y\left(t\right)=3t+2\end{array}$

$y=-3x+14$

$\left\{\begin{array}{l}x\left(t\right)=2t-1\\ y\left(t\right)=5t\end{array}$

$\left\{\begin{array}{l}x\left(t\right)=4t-1\\ y\left(t\right)=4t+2\end{array}$

$y=x+3$

For the following exercises, parameterize (write parametric equations for) each Cartesian equation by setting $x\left(t\right)=t$ or by setting $\text{\hspace{0.17em}}y\left(t\right)=t.$

$y\left(x\right)=3{x}^{2}+3$

$y\left(x\right)=2\mathrm{sin}\text{\hspace{0.17em}}x+1$

$\left\{\begin{array}{l}x\left(t\right)=t\hfill \\ y\left(t\right)=2\mathrm{sin}t+1\hfill \end{array}$

$x\left(y\right)=3\mathrm{log}\left(y\right)+y$

$x\left(y\right)=\sqrt{y}+2y$

$\left\{\begin{array}{l}x\left(t\right)=\sqrt{t}+2t\hfill \\ y\left(t\right)=t\hfill \end{array}$

For the following exercises, parameterize (write parametric equations for) each Cartesian equation by using $x\left(t\right)=a\mathrm{cos}\text{\hspace{0.17em}}t$ and $\text{\hspace{0.17em}}y\left(t\right)=b\mathrm{sin}\text{\hspace{0.17em}}t.\text{\hspace{0.17em}}$ Identify the curve.

$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{9}=1$

$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{36}=1$

$\left\{\begin{array}{l}x\left(t\right)=4\mathrm{cos}\text{\hspace{0.17em}}t\hfill \\ y\left(t\right)=6\mathrm{sin}\text{\hspace{0.17em}}t\hfill \end{array};\text{\hspace{0.17em}}$ Ellipse

${x}^{2}+{y}^{2}=16$

${x}^{2}+{y}^{2}=10$

$\left\{\begin{array}{l}x\left(t\right)=\sqrt{10}\mathrm{cos}t\hfill \\ y\left(t\right)=\sqrt{10}\mathrm{sin}t\hfill \end{array};\text{\hspace{0.17em}}$ Circle

Parameterize the line from $\text{\hspace{0.17em}}\left(3,0\right)\text{\hspace{0.17em}}$ to $\text{\hspace{0.17em}}\left(-2,-5\right)\text{\hspace{0.17em}}$ so that the line is at $\text{\hspace{0.17em}}\left(3,0\right)\text{\hspace{0.17em}}$ at $\text{\hspace{0.17em}}t=0,\text{\hspace{0.17em}}$ and at $\text{\hspace{0.17em}}\left(-2,-5\right)\text{\hspace{0.17em}}$ at $\text{\hspace{0.17em}}t=1.$

Parameterize the line from $\text{\hspace{0.17em}}\left(-1,0\right)\text{\hspace{0.17em}}$ to $\text{\hspace{0.17em}}\left(3,-2\right)\text{\hspace{0.17em}}$ so that the line is at $\text{\hspace{0.17em}}\left(-1,0\right)\text{\hspace{0.17em}}$ at $\text{\hspace{0.17em}}t=0,\text{\hspace{0.17em}}$ and at $\text{\hspace{0.17em}}\left(3,-2\right)\text{\hspace{0.17em}}$ at $\text{\hspace{0.17em}}t=1.$

$\left\{\begin{array}{l}x\left(t\right)=-1+4t\hfill \\ y\left(t\right)=-2t\hfill \end{array}$

Parameterize the line from $\text{\hspace{0.17em}}\left(-1,5\right)\text{\hspace{0.17em}}$ to $\text{\hspace{0.17em}}\left(2,3\right)$ so that the line is at $\text{\hspace{0.17em}}\left(-1,5\right)\text{\hspace{0.17em}}$ at $\text{\hspace{0.17em}}t=0,\text{\hspace{0.17em}}$ and at $\text{\hspace{0.17em}}\left(2,3\right)\text{\hspace{0.17em}}$ at $\text{\hspace{0.17em}}t=1.$

Parameterize the line from $\text{\hspace{0.17em}}\left(4,1\right)\text{\hspace{0.17em}}$ to $\text{\hspace{0.17em}}\left(6,-2\right)\text{\hspace{0.17em}}$ so that the line is at $\text{\hspace{0.17em}}\left(4,1\right)\text{\hspace{0.17em}}$ at $\text{\hspace{0.17em}}t=0,\text{\hspace{0.17em}}$ and at $\text{\hspace{0.17em}}\left(6,-2\right)\text{\hspace{0.17em}}$ at $\text{\hspace{0.17em}}t=1.$

$\left\{\begin{array}{l}x\left(t\right)=4+2t\hfill \\ y\left(t\right)=1-3t\hfill \end{array}$

Technology

For the following exercises, use the table feature in the graphing calculator to determine whether the graphs intersect.

yes, at $t=2$

For the following exercises, use a graphing calculator to complete the table of values for each set of parametric equations.

$\left\{\begin{array}{l}{x}_{1}\left(t\right)=3{t}^{2}-3t+7\hfill \\ {y}_{1}\left(t\right)=2t+3\hfill \end{array}$

$t$ $x$ $y$
–1
0
1

$\left\{\begin{array}{l}{x}_{1}\left(t\right)={t}^{2}-4\hfill \\ {y}_{1}\left(t\right)=2{t}^{2}-1\hfill \end{array}$

$t$ $x$ $y$
1
2
3
$t$ $x$ $y$
1 -3 1
2 0 7
3 5 17

$\left\{\begin{array}{l}{x}_{1}\left(t\right)={t}^{4}\hfill \\ {y}_{1}\left(t\right)={t}^{3}+4\hfill \end{array}$

$t$ $x$ $y$
-1
0
1
2

Extensions

Find two different sets of parametric equations for $\text{\hspace{0.17em}}y={\left(x+1\right)}^{2}.$

Find two different sets of parametric equations for $\text{\hspace{0.17em}}y=3x-2.$

Find two different sets of parametric equations for $\text{\hspace{0.17em}}y={x}^{2}-4x+4.$

The sequence is {1,-1,1-1.....} has
how can we solve this problem
Sin(A+B) = sinBcosA+cosBsinA
Prove it
Eseka
Eseka
hi
Joel
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
7.5 and 37.5
Nando
find the sum of 28th term of the AP 3+10+17+---------
I think you should say "28 terms" instead of "28th term"
Vedant
the 28th term is 175
Nando
192
Kenneth
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n
write down the polynomial function with root 1/3,2,-3 with solution
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
what is the answer to dividing negative index
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
give me the waec 2019 questions
the polar co-ordinate of the point (-1, -1)