<< Chapter < Page | Chapter >> Page > |
Given $\text{\hspace{0.17em}}z=1-7i,\text{\hspace{0.17em}}$ find $\text{\hspace{0.17em}}\left|z\right|.$
$\left|z\right|=\sqrt{50}=5\sqrt{2}$
The polar form of a complex number expresses a number in terms of an angle $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ and its distance from the origin $\text{\hspace{0.17em}}r.\text{\hspace{0.17em}}$ Given a complex number in rectangular form expressed as $\text{\hspace{0.17em}}z=x+yi,\text{\hspace{0.17em}}$ we use the same conversion formulas as we do to write the number in trigonometric form:
We review these relationships in [link] .
We use the term modulus to represent the absolute value of a complex number, or the distance from the origin to the point $\text{\hspace{0.17em}}\left(x,y\right).\text{\hspace{0.17em}}$ The modulus, then, is the same as $\text{\hspace{0.17em}}r,\text{\hspace{0.17em}}$ the radius in polar form. We use $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ to indicate the angle of direction (just as with polar coordinates). Substituting, we have
Writing a complex number in polar form involves the following conversion formulas:
Making a direct substitution, we have
where $\text{\hspace{0.17em}}r\text{\hspace{0.17em}}$ is the modulus and $\theta $ is the argument . We often use the abbreviation $\text{\hspace{0.17em}}r\text{cis}\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ to represent $\text{\hspace{0.17em}}r\left(\mathrm{cos}\text{\hspace{0.17em}}\theta +i\mathrm{sin}\text{\hspace{0.17em}}\theta \right).$
Express the complex number $\text{\hspace{0.17em}}4i\text{\hspace{0.17em}}$ using polar coordinates.
On the complex plane, the number $\text{\hspace{0.17em}}z=4i\text{\hspace{0.17em}}$ is the same as $\text{\hspace{0.17em}}z=0+4i.\text{\hspace{0.17em}}$ Writing it in polar form, we have to calculate $\text{\hspace{0.17em}}r\text{\hspace{0.17em}}$ first.
Next, we look at $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ If $\text{\hspace{0.17em}}x=r\mathrm{cos}\text{\hspace{0.17em}}\theta ,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}x=0,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}\theta =\frac{\pi}{2}.\text{\hspace{0.17em}}$ In polar coordinates, the complex number $\text{\hspace{0.17em}}z=0+4i\text{\hspace{0.17em}}$ can be written as $\text{\hspace{0.17em}}z=4\left(\mathrm{cos}\left(\frac{\pi}{2}\right)+i\mathrm{sin}\left(\frac{\pi}{2}\right)\right)\text{\hspace{0.17em}}$ or $\text{\hspace{0.17em}}4\text{cis}\left(\text{\hspace{0.17em}}\frac{\pi}{2}\right).\text{\hspace{0.17em}}$ See [link] .
Express $\text{\hspace{0.17em}}z=3i\text{\hspace{0.17em}}$ as $\text{\hspace{0.17em}}r\text{\hspace{0.17em}}\text{cis}\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ in polar form.
$z=3\left(\mathrm{cos}\left(\frac{\pi}{2}\right)+i\mathrm{sin}\left(\frac{\pi}{2}\right)\right)$
Find the polar form of $\text{\hspace{0.17em}}-4+4i.$
First, find the value of $\text{\hspace{0.17em}}r.$
Find the angle $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ using the formula:
Thus, the solution is $\text{\hspace{0.17em}}4\sqrt{2}\text{cis}\left(\frac{3\pi}{4}\right).$
Write $\text{\hspace{0.17em}}z=\sqrt{3}+i\text{\hspace{0.17em}}$ in polar form.
$z=2\left(\mathrm{cos}\left(\frac{\pi}{6}\right)+i\mathrm{sin}\left(\frac{\pi}{6}\right)\right)$
Converting a complex number from polar form to rectangular form is a matter of evaluating what is given and using the distributive property. In other words, given $\text{\hspace{0.17em}}z=r\left(\mathrm{cos}\text{\hspace{0.17em}}\theta +i\mathrm{sin}\text{\hspace{0.17em}}\theta \right),\text{\hspace{0.17em}}$ first evaluate the trigonometric functions $\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\theta .\text{\hspace{0.17em}}$ Then, multiply through by $\text{\hspace{0.17em}}r.$
Convert the polar form of the given complex number to rectangular form:
We begin by evaluating the trigonometric expressions.
After substitution, the complex number is
We apply the distributive property:
The rectangular form of the given point in complex form is $\text{\hspace{0.17em}}6\sqrt{3}+6i.$
Find the rectangular form of the complex number given $\text{\hspace{0.17em}}r=13\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\theta =\frac{5}{12}.$
If $\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\theta =\frac{5}{12},\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\theta =\frac{y}{x},\text{\hspace{0.17em}}$ we first determine $\text{\hspace{0.17em}}r=\sqrt{{x}^{2}+{y}^{2}}=\sqrt{{12}^{2}+{5}^{2}}=13\text{.}$ We then find $\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\theta =\frac{x}{r}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\theta =\frac{y}{r}.$
The rectangular form of the given number in complex form is $\text{\hspace{0.17em}}12+5i.$
Convert the complex number to rectangular form:
$z=2\sqrt{3}-2i$
Now that we can convert complex numbers to polar form we will learn how to perform operations on complex numbers in polar form. For the rest of this section, we will work with formulas developed by French mathematician Abraham de Moivre (1667-1754). These formulas have made working with products, quotients, powers, and roots of complex numbers much simpler than they appear. The rules are based on multiplying the moduli and adding the arguments.
Notification Switch
Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?