<< Chapter < Page Chapter >> Page >

Given z = 1 7 i , find | z | .

| z | = 50 = 5 2

Got questions? Get instant answers now!

Writing complex numbers in polar form

The polar form of a complex number    expresses a number in terms of an angle θ and its distance from the origin r . Given a complex number in rectangular form expressed as z = x + y i , we use the same conversion formulas as we do to write the number in trigonometric form:

x = r cos θ y = r sin θ r = x 2 + y 2

We review these relationships in [link] .

Triangle plotted in the complex plane (x axis is real, y axis is imaginary). Base is along the x/real axis, height is some y/imaginary value in Q 1, and hypotenuse r extends from origin to that point (x+yi) in Q 1. The angle at the origin is theta. There is an arc going through (x+yi).

We use the term modulus to represent the absolute value of a complex number, or the distance from the origin to the point ( x , y ) . The modulus, then, is the same as r , the radius in polar form. We use θ to indicate the angle of direction (just as with polar coordinates). Substituting, we have

z = x + y i z = r cos θ + ( r sin θ ) i z = r ( cos θ + i sin θ )

Polar form of a complex number

Writing a complex number in polar form involves the following conversion formulas:

x = r cos θ y = r sin θ r = x 2 + y 2

Making a direct substitution, we have

z = x + y i z = ( r cos θ ) + i ( r sin θ ) z = r ( cos θ + i sin θ )

where r is the modulus    and θ is the argument    . We often use the abbreviation r cis θ to represent r ( cos θ + i sin θ ) .

Expressing a complex number using polar coordinates

Express the complex number 4 i using polar coordinates.

On the complex plane, the number z = 4 i is the same as z = 0 + 4 i . Writing it in polar form, we have to calculate r first.

r = x 2 + y 2 r = 0 2 + 4 2 r = 16 r = 4

Next, we look at x . If x = r cos θ , and x = 0 , then θ = π 2 . In polar coordinates, the complex number z = 0 + 4 i can be written as z = 4 ( cos ( π 2 ) + i sin ( π 2 ) ) or 4 cis ( π 2 ) . See [link] .

Plot of z=4i in the complex plane, also shows that the in polar coordinate it would be (4,pi/2).
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Express z = 3 i as r cis θ in polar form.

z = 3 ( cos ( π 2 ) + i sin ( π 2 ) )

Got questions? Get instant answers now!

Finding the polar form of a complex number

Find the polar form of 4 + 4 i .

First, find the value of r .

r = x 2 + y 2 r = ( 4 ) 2 + ( 4 2 ) r = 32 r = 4 2

Find the angle θ using the formula:

cos θ = x r cos θ = 4 4 2 cos θ = 1 2 θ = cos 1 ( 1 2 ) = 3 π 4

Thus, the solution is 4 2 cis ( 3 π 4 ) .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Write z = 3 + i in polar form.

z = 2 ( cos ( π 6 ) + i sin ( π 6 ) )

Got questions? Get instant answers now!

Converting a complex number from polar to rectangular form

Converting a complex number from polar form to rectangular form is a matter of evaluating what is given and using the distributive property. In other words, given z = r ( cos θ + i sin θ ) , first evaluate the trigonometric functions cos θ and sin θ . Then, multiply through by r .

Converting from polar to rectangular form

Convert the polar form of the given complex number to rectangular form:

z = 12 ( cos ( π 6 ) + i sin ( π 6 ) )

We begin by evaluating the trigonometric expressions.

cos ( π 6 ) = 3 2 and sin ( π 6 ) = 1 2

After substitution, the complex number is

z = 12 ( 3 2 + 1 2 i )

We apply the distributive property:

z = 12 ( 3 2 + 1 2 i )    = ( 12 ) 3 2 + ( 12 ) 1 2 i    = 6 3 + 6 i

The rectangular form of the given point in complex form is 6 3 + 6 i .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Finding the rectangular form of a complex number

Find the rectangular form of the complex number given r = 13 and tan θ = 5 12 .

If tan θ = 5 12 , and tan θ = y x , we first determine r = x 2 + y 2 = 12 2 + 5 2 = 13 . We then find cos θ = x r and sin θ = y r .

z = 13 ( cos θ + i sin θ ) = 13 ( 12 13 + 5 13 i ) = 12 + 5 i

The rectangular form of the given number in complex form is 12 + 5 i .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Convert the complex number to rectangular form:

z = 4 ( cos 11 π 6 + i sin 11 π 6 )

z = 2 3 2 i

Got questions? Get instant answers now!

Finding products of complex numbers in polar form

Now that we can convert complex numbers to polar form we will learn how to perform operations on complex numbers in polar form. For the rest of this section, we will work with formulas developed by French mathematician Abraham de Moivre (1667-1754). These formulas have made working with products, quotients, powers, and roots of complex numbers much simpler than they appear. The rules are based on multiplying the moduli and adding the arguments.

Questions & Answers

write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
the polar co-ordinate of the point (-1, -1)
Sumit Reply
prove the identites sin x ( 1+ tan x )+ cos x ( 1+ cot x )= sec x + cosec x
Rockstar Reply
tanh`(x-iy) =A+iB, find A and B
Pankaj Reply
B=Ai-itan(hx-hiy)
Rukmini
Give me the reciprocal of even number
Aliyu
The reciprocal of an even number is a proper fraction
Jamilu
what is the addition of 101011 with 101010
Branded Reply
If those numbers are binary, it's 1010101. If they are base 10, it's 202021.
Jack
extra power 4 minus 5 x cube + 7 x square minus 5 x + 1 equal to zero
archana Reply
the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
Kc Reply
1+cos²A/cos²A=2cosec²A-1
Ramesh Reply
test for convergence the series 1+x/2+2!/9x3
success Reply
Practice Key Terms 4

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask