# 10.1 Non-right triangles: law of sines  (Page 5/10)

 Page 5 / 10

## Verbal

Describe the altitude of a triangle.

The altitude extends from any vertex to the opposite side or to the line containing the opposite side at a 90° angle.

Compare right triangles and oblique triangles.

When can you use the Law of Sines to find a missing angle?

When the known values are the side opposite the missing angle and another side and its opposite angle.

In the Law of Sines, what is the relationship between the angle in the numerator and the side in the denominator?

What type of triangle results in an ambiguous case?

A triangle with two given sides and a non-included angle.

## Algebraic

For the following exercises, assume $\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}$ is opposite side $\text{\hspace{0.17em}}a,\beta \text{\hspace{0.17em}}$ is opposite side $\text{\hspace{0.17em}}b,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\gamma \text{\hspace{0.17em}}$ is opposite side $\text{\hspace{0.17em}}c.\text{\hspace{0.17em}}$ Solve each triangle, if possible. Round each answer to the nearest tenth.

$\alpha =43°,\gamma =69°,a=20$

$\alpha =35°,\gamma =73°,c=20$

$\alpha =60°,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\beta =60°,\text{\hspace{0.17em}}\gamma =60°$

$a=4,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\alpha =\text{\hspace{0.17em}}60°,\text{\hspace{0.17em}}\beta =100°$

$b=10,\text{\hspace{0.17em}}\beta =95°,\gamma =\text{\hspace{0.17em}}30°$

For the following exercises, use the Law of Sines to solve for the missing side for each oblique triangle. Round each answer to the nearest hundredth. Assume that angle $\text{\hspace{0.17em}}A\text{\hspace{0.17em}}$ is opposite side $\text{\hspace{0.17em}}a,\text{\hspace{0.17em}}$ angle $\text{\hspace{0.17em}}B\text{\hspace{0.17em}}$ is opposite side $\text{\hspace{0.17em}}b,\text{\hspace{0.17em}}$ and angle $\text{\hspace{0.17em}}C\text{\hspace{0.17em}}$ is opposite side $\text{\hspace{0.17em}}c.$

Find side $\text{\hspace{0.17em}}b\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}A=37°,\text{\hspace{0.17em}}\text{\hspace{0.17em}}B=49°,\text{\hspace{0.17em}}c=5.$

$b\approx 3.78$

Find side $\text{\hspace{0.17em}}a$ when $\text{\hspace{0.17em}}A=132°,C=23°,b=10.$

Find side $\text{\hspace{0.17em}}c\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}B=37°,C=21,\text{\hspace{0.17em}}b=23.$

$c\approx 13.70$

For the following exercises, assume $\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}$ is opposite side $\text{\hspace{0.17em}}a,\beta \text{\hspace{0.17em}}$ is opposite side $\text{\hspace{0.17em}}b,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\gamma \text{\hspace{0.17em}}$ is opposite side $\text{\hspace{0.17em}}c.\text{\hspace{0.17em}}$ Determine whether there is no triangle, one triangle, or two triangles. Then solve each triangle, if possible. Round each answer to the nearest tenth.

$\alpha =119°,a=14,b=26$

$\gamma =113°,b=10,c=32$

one triangle, $\text{\hspace{0.17em}}\alpha \approx 50.3°,\beta \approx 16.7°,a\approx 26.7$

$b=3.5,\text{\hspace{0.17em}}\text{\hspace{0.17em}}c=5.3,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\gamma =\text{\hspace{0.17em}}80°$

$a=12,\text{\hspace{0.17em}}\text{\hspace{0.17em}}c=17,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\alpha =\text{\hspace{0.17em}}35°$

two triangles, or

$a=20.5,\text{\hspace{0.17em}}\text{\hspace{0.17em}}b=35.0,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\beta =25°$

$a=7,\text{\hspace{0.17em}}c=9,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\alpha =\text{\hspace{0.17em}}43°$

two triangles, or

$a=7,b=3,\beta =24°$

$b=13,c=5,\gamma =\text{\hspace{0.17em}}10°$

two triangles, $\text{\hspace{0.17em}}\alpha \approx 143.2°,\beta \approx 26.8°,a\approx 17.3\text{\hspace{0.17em}}$ or $\text{\hspace{0.17em}}{\alpha }^{\prime }\approx 16.8°,{\beta }^{\prime }\approx 153.2°,{a}^{\prime }\approx 8.3$

$a=2.3,c=1.8,\gamma =28°$

$\beta =119°,b=8.2,a=11.3$

no triangle possible

For the following exercises, use the Law of Sines to solve, if possible, the missing side or angle for each triangle or triangles in the ambiguous case. Round each answer to the nearest tenth.

Find angle $A$ when $\text{\hspace{0.17em}}a=24,b=5,B=22°.$

Find angle $A$ when $\text{\hspace{0.17em}}a=13,b=6,B=20°.$

$A\approx 47.8°\text{\hspace{0.17em}}$ or $\text{\hspace{0.17em}}{A}^{\prime }\approx 132.2°$

Find angle $\text{\hspace{0.17em}}B\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}A=12°,a=2,b=9.$

For the following exercises, find the area of the triangle with the given measurements. Round each answer to the nearest tenth.

$a=5,c=6,\beta =\text{\hspace{0.17em}}35°$

$8.6$

$b=11,c=8,\alpha =28°$

$a=32,b=24,\gamma =75°$

$370.9$

$a=7.2,b=4.5,\gamma =43°$

## Graphical

For the following exercises, find the length of side $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ Round to the nearest tenth.

$12.3$

For the following exercises, find the measure of angle $\text{\hspace{0.17em}}x,\text{\hspace{0.17em}}$ if possible. Round to the nearest tenth.

$29.7°$

Notice that $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ is an obtuse angle.

$110.6°$

For the following exercises, find the area of each triangle. Round each answer to the nearest tenth.

$57.1$

## Extensions

Find the radius of the circle in [link] . Round to the nearest tenth.

Find the diameter of the circle in [link] . Round to the nearest tenth.

$10.1$

find to nearest one decimal place of centimeter the length of an arc of circle of radius length 12.5cm and subtending of centeral angle 1.6rad
factoring polynomial
find general solution of the Tanx=-1/root3,secx=2/root3
find general solution of the following equation
Nani
the value of 2 sin square 60 Cos 60
0.75
Lynne
0.75
Inkoom
when can I use sin, cos tan in a giving question
depending on the question
Nicholas
I am a carpenter and I have to cut and assemble a conventional roof line for a new home. The dimensions are: width 30'6" length 40'6". I want a 6 and 12 pitch. The roof is a full hip construction. Give me the L,W and height of rafters for the hip, hip jacks also the length of common jacks.
John
I want to learn the calculations
where can I get indices
I need matrices
Nasasira
hi
Raihany
Hi
Solomon
need help
Raihany
maybe provide us videos
Nasasira
Raihany
Hello
Cromwell
a
Amie
What do you mean by a
Cromwell
nothing. I accidentally press it
Amie
you guys know any app with matrices?
Khay
Ok
Cromwell
Solve the x? x=18+(24-3)=72
x-39=72 x=111
Suraj
Solve the formula for the indicated variable P=b+4a+2c, for b
Need help with this question please
b=-4ac-2c+P
Denisse
b=p-4a-2c
Suddhen
b= p - 4a - 2c
Snr
p=2(2a+C)+b
Suraj
b=p-2(2a+c)
Tapiwa
P=4a+b+2C
COLEMAN
b=P-4a-2c
COLEMAN
like Deadra, show me the step by step order of operation to alive for b
John
A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
The sequence is {1,-1,1-1.....} has
how can we solve this problem
Sin(A+B) = sinBcosA+cosBsinA
Prove it
Eseka
Eseka
hi
Joel
yah
immy