# 10.1 Non-right triangles: law of sines  (Page 3/10)

 Page 3 / 10

Given $\text{\hspace{0.17em}}\alpha =80°,a=120,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}b=121,\text{\hspace{0.17em}}$ find the missing side and angles. If there is more than one possible solution, show both.

Solution 1

$\begin{array}{ll}\alpha =80°\hfill & a=120\hfill \\ \beta \approx 83.2°\hfill & b=121\hfill \\ \gamma \approx 16.8°\hfill & c\approx 35.2\hfill \end{array}$

Solution 2

$\begin{array}{l}{\alpha }^{\prime }=80°\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{a}^{\prime }=120\hfill \\ {\beta }^{\prime }\approx 96.8°\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{b}^{\prime }=121\hfill \\ {\gamma }^{\prime }\approx 3.2°\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{c}^{\prime }\approx 6.8\hfill \end{array}$

## Solving for the unknown sides and angles of a ssa triangle

In the triangle shown in [link] , solve for the unknown side and angles. Round your answers to the nearest tenth.

In choosing the pair of ratios from the Law of Sines to use, look at the information given. In this case, we know the angle $\text{\hspace{0.17em}}\gamma =85°,\text{\hspace{0.17em}}$ and its corresponding side $\text{\hspace{0.17em}}c=12,\text{\hspace{0.17em}}$ and we know side $\text{\hspace{0.17em}}b=9.\text{\hspace{0.17em}}$ We will use this proportion to solve for $\text{\hspace{0.17em}}\beta .$

To find $\text{\hspace{0.17em}}\beta ,\text{\hspace{0.17em}}$ apply the inverse sine function. The inverse sine will produce a single result, but keep in mind that there may be two values for $\text{\hspace{0.17em}}\beta .\text{\hspace{0.17em}}$ It is important to verify the result, as there may be two viable solutions, only one solution (the usual case), or no solutions.

$\begin{array}{l}\beta ={\mathrm{sin}}^{-1}\left(\frac{9\mathrm{sin}\left(85°\right)}{12}\right)\hfill \\ \beta \approx {\mathrm{sin}}^{-1}\left(0.7471\right)\hfill \\ \beta \approx 48.3°\hfill \end{array}$

In this case, if we subtract $\text{\hspace{0.17em}}\beta \text{\hspace{0.17em}}$ from 180°, we find that there may be a second possible solution. Thus, $\text{\hspace{0.17em}}\beta =180°-48.3°\approx 131.7°.\text{\hspace{0.17em}}$ To check the solution, subtract both angles, 131.7° and 85°, from 180°. This gives

$\alpha =180°-85°-131.7°\approx -36.7°,$

which is impossible, and so $\text{\hspace{0.17em}}\beta \approx 48.3°.$

To find the remaining missing values, we calculate $\text{\hspace{0.17em}}\alpha =180°-85°-48.3°\approx 46.7°.\text{\hspace{0.17em}}$ Now, only side $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ is needed. Use the Law of Sines to solve for $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ by one of the proportions.

The complete set of solutions for the given triangle is

Given $\text{\hspace{0.17em}}\alpha =80°,a=100,\text{\hspace{0.17em}}\text{\hspace{0.17em}}b=10,\text{\hspace{0.17em}}$ find the missing side and angles. If there is more than one possible solution, show both. Round your answers to the nearest tenth.

$\beta \approx 5.7°,\gamma \approx 94.3°,c\approx 101.3$

## Finding the triangles that meet the given criteria

Find all possible triangles if one side has length 4 opposite an angle of 50°, and a second side has length 10.

Using the given information, we can solve for the angle opposite the side of length 10. See [link] .

$\begin{array}{l}\text{\hspace{0.17em}}\frac{\mathrm{sin}\text{\hspace{0.17em}}\alpha }{10}=\frac{\mathrm{sin}\left(50°\right)}{4}\hfill \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\alpha =\frac{10\mathrm{sin}\left(50°\right)}{4}\hfill \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\alpha \approx 1.915\hfill \end{array}$

We can stop here without finding the value of $\text{\hspace{0.17em}}\alpha .\text{\hspace{0.17em}}$ Because the range of the sine function is $\text{\hspace{0.17em}}\left[-1,1\right],\text{\hspace{0.17em}}$ it is impossible for the sine value to be 1.915. In fact, inputting $\text{\hspace{0.17em}}{\mathrm{sin}}^{-1}\left(1.915\right)\text{\hspace{0.17em}}$ in a graphing calculator generates an ERROR DOMAIN. Therefore, no triangles can be drawn with the provided dimensions.

Determine the number of triangles possible given $\text{\hspace{0.17em}}a=31,\text{\hspace{0.17em}}\text{\hspace{0.17em}}b=26,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\beta =48°.\text{\hspace{0.17em}}\text{\hspace{0.17em}}$

two

## Finding the area of an oblique triangle using the sine function

Now that we can solve a triangle for missing values, we can use some of those values and the sine function to find the area of an oblique triangle. Recall that the area formula for a triangle is given as $\text{\hspace{0.17em}}\text{Area}=\frac{1}{2}bh,\text{\hspace{0.17em}}$ where $\text{\hspace{0.17em}}b\text{\hspace{0.17em}}$ is base and $\text{\hspace{0.17em}}h\text{\hspace{0.17em}}$ is height. For oblique triangles, we must find $\text{\hspace{0.17em}}h\text{\hspace{0.17em}}$ before we can use the area formula. Observing the two triangles in [link] , one acute and one obtuse, we can drop a perpendicular to represent the height and then apply the trigonometric property $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\alpha =\frac{\text{opposite}}{\text{hypotenuse}}\text{\hspace{0.17em}}$ to write an equation for area in oblique triangles. In the acute triangle, we have $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\alpha =\frac{h}{c}\text{\hspace{0.17em}}$ or $c\mathrm{sin}\text{\hspace{0.17em}}\alpha =h.\text{\hspace{0.17em}}$ However, in the obtuse triangle, we drop the perpendicular outside the triangle and extend the base $\text{\hspace{0.17em}}b\text{\hspace{0.17em}}$ to form a right triangle. The angle used in calculation is $\text{\hspace{0.17em}}{\alpha }^{\prime },\text{\hspace{0.17em}}$ or $\text{\hspace{0.17em}}180-\alpha .$

#### Questions & Answers

if sin15°=√p, express the following in terms of p
Norman Reply
prove sin²x+cos²x=3+cos4x
Kiddy Reply
the difference between two signed numbers is -8.if the minued is 5,what is the subtrahend
jeramie Reply
the difference between two signed numbers is -8.if the minuend is 5.what is the subtrahend
jeramie
what are odd numbers
micheal Reply
numbers that leave a remainder when divided by 2
Thorben
1,3,5,7,... 99,...867
Thorben
7%2=1, 679%2=1, 866245%2=1
Thorben
the third and the seventh terms of a G.P are 81 and 16, find the first and fifth terms.
Suleiman Reply
if a=3, b =4 and c=5 find the six trigonometric value sin
Martin Reply
ask
Ans
pls how do I factorize x⁴+x³-7x²-x+6=0
Gift Reply
in a function the input value is called
Rimsha Reply
how do I test for values on the number line
Modesta Reply
if a=4 b=4 then a+b=
Rimsha Reply
a+b+2ab
Kin
commulative principle
DIOSDADO
a+b= 4+4=8
Mimi
If a=4 and b=4 then we add the value of a and b i.e a+b=4+4=8.
Tariq
what are examples of natural number
sani Reply
an equation for the line that goes through the point (-1,12) and has a slope of 2,3
Katheryn Reply
3y=-9x+25
Ishaq
show that the set of natural numberdoes not from agroup with addition or multiplication butit forms aseni group with respect toaaddition as well as multiplication
Komal Reply
x^20+x^15+x^10+x^5/x^2+1
Urmila Reply
evaluate each algebraic expression. 2x+×_2 if ×=5
Sarch Reply

### Read also:

#### Get Jobilize Job Search Mobile App in your pocket Now!

Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications? By By By Richley Crapo By Brooke Delaney By Brooke Delaney By Ali Sid By OpenStax By OpenStax By OpenStax By OpenStax By Dan Ariely By Mary Matera