# 10.1 Non-right triangles: law of sines

 Page 1 / 10
In this section, you will:
• Use the Law of Sines to solve oblique triangles.
• Find the area of an oblique triangle using the sine function.
• Solve applied problems using the Law of Sines.

Suppose two radar stations located 20 miles apart each detect an aircraft between them. The angle of elevation measured by the first station is 35 degrees, whereas the angle of elevation    measured by the second station is 15 degrees. How can we determine the altitude of the aircraft? We see in [link] that the triangle formed by the aircraft and the two stations is not a right triangle, so we cannot use what we know about right triangles. In this section, we will find out how to solve problems involving non-right triangles .

## Using the law of sines to solve oblique triangles

In any triangle, we can draw an altitude    , a perpendicular line from one vertex to the opposite side, forming two right triangles. It would be preferable, however, to have methods that we can apply directly to non-right triangles without first having to create right triangles.

Any triangle that is not a right triangle is an oblique triangle    . Solving an oblique triangle means finding the measurements of all three angles and all three sides. To do so, we need to start with at least three of these values, including at least one of the sides. We will investigate three possible oblique triangle problem situations:

1. ASA (angle-side-angle) We know the measurements of two angles and the included side. See [link] .
2. AAS (angle-angle-side) We know the measurements of two angles and a side that is not between the known angles. See [link] .
3. SSA (side-side-angle) We know the measurements of two sides and an angle that is not between the known sides. See [link] .

Knowing how to approach each of these situations enables us to solve oblique triangles without having to drop a perpendicular to form two right triangles. Instead, we can use the fact that the ratio of the measurement of one of the angles to the length of its opposite side will be equal to the other two ratios of angle measure to opposite side. Let’s see how this statement is derived by considering the triangle shown in [link] .

Using the right triangle relationships, we know that $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\alpha =\frac{h}{b}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\beta =\frac{h}{a}.\text{\hspace{0.17em}}\text{\hspace{0.17em}}$ Solving both equations for $\text{\hspace{0.17em}}h\text{\hspace{0.17em}}$ gives two different expressions for $\text{\hspace{0.17em}}h.$

We then set the expressions equal to each other.

Similarly, we can compare the other ratios.

Collectively, these relationships are called the Law of Sines .

$\frac{\mathrm{sin}\text{\hspace{0.17em}}\alpha }{a}=\frac{\mathrm{sin}\text{\hspace{0.17em}}\beta }{b}=\frac{\mathrm{sin}\text{\hspace{0.17em}}\lambda }{c}$

Note the standard way of labeling triangles: angle $\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}$ (alpha) is opposite side $\text{\hspace{0.17em}}a;\text{\hspace{0.17em}}$ angle $\text{\hspace{0.17em}}\beta \text{\hspace{0.17em}}$ (beta) is opposite side $\text{\hspace{0.17em}}b;\text{\hspace{0.17em}}$ and angle $\text{\hspace{0.17em}}\gamma \text{\hspace{0.17em}}$ (gamma) is opposite side $\text{\hspace{0.17em}}c.\text{\hspace{0.17em}}$ See [link] .

While calculating angles and sides, be sure to carry the exact values through to the final answer. Generally, final answers are rounded to the nearest tenth, unless otherwise specified.

## Law of sines

Given a triangle with angles and opposite sides labeled as in [link] , the ratio of the measurement of an angle to the length of its opposite side will be equal to the other two ratios of angle measure to opposite side. All proportions will be equal. The Law of Sines    is based on proportions and is presented symbolically two ways.

$\frac{\mathrm{sin}\text{\hspace{0.17em}}\alpha }{a}=\frac{\mathrm{sin}\text{\hspace{0.17em}}\beta }{b}=\frac{\mathrm{sin}\text{\hspace{0.17em}}\gamma }{c}$
$\frac{a}{\mathrm{sin}\text{\hspace{0.17em}}\alpha }=\frac{b}{\mathrm{sin}\text{\hspace{0.17em}}\beta }=\frac{c}{\mathrm{sin}\text{\hspace{0.17em}}\gamma }$

To solve an oblique triangle, use any pair of applicable ratios.

A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
The sequence is {1,-1,1-1.....} has
how can we solve this problem
Sin(A+B) = sinBcosA+cosBsinA
Prove it
Eseka
Eseka
hi
Joel
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
7.5 and 37.5
Nando
find the sum of 28th term of the AP 3+10+17+---------
I think you should say "28 terms" instead of "28th term"
Vedant
the 28th term is 175
Nando
192
Kenneth
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n
write down the polynomial function with root 1/3,2,-3 with solution
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
what is the answer to dividing negative index
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
give me the waec 2019 questions