0.1 Proofs, identities, and toolkit functions

 Page 1 / 1

Important proofs and derivations

Product Rule

${\mathrm{log}}_{a}xy={\mathrm{log}}_{a}x+{\mathrm{log}}_{a}y$

Proof:

Let $\text{\hspace{0.17em}}m={\mathrm{log}}_{a}x\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}n={\mathrm{log}}_{a}y.$

Write in exponent form.

$x={a}^{m}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}y={a}^{n}.$

Multiply.

$xy={a}^{m}{a}^{n}={a}^{m+n}$

$\begin{array}{ccc}\hfill {a}^{m+n}& =& xy\hfill \\ \hfill {\mathrm{log}}_{a}\left(xy\right)& =& m+n\hfill \\ & =& {\mathrm{log}}_{a}x+{\mathrm{log}}_{b}y\hfill \end{array}$

Change of Base Rule

$\begin{array}{l}\hfill \\ {\mathrm{log}}_{a}b=\frac{{\mathrm{log}}_{c}b}{{\mathrm{log}}_{c}a}\hfill \\ {\mathrm{log}}_{a}b=\frac{1}{{\mathrm{log}}_{b}a}\hfill \end{array}$

where $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ are positive, and $\text{\hspace{0.17em}}a>0,a\ne 1.$

Proof:

Let $\text{\hspace{0.17em}}x={\mathrm{log}}_{a}b.$

Write in exponent form.

${a}^{x}=b$

Take the $\text{\hspace{0.17em}}{\mathrm{log}}_{c}\text{\hspace{0.17em}}$ of both sides.

$\begin{array}{ccc}\hfill {\mathrm{log}}_{c}{a}^{x}& =& {\mathrm{log}}_{c}b\hfill \\ \hfill x{\mathrm{log}}_{c}a& =& {\mathrm{log}}_{c}b\hfill \\ \hfill x& =& \frac{{\mathrm{log}}_{c}b}{{\mathrm{log}}_{c}a}\hfill \\ \hfill {\mathrm{log}}_{a}b& =& \frac{{\mathrm{log}}_{c}b}{{\mathrm{log}}_{a}b}\hfill \end{array}$

When $\text{\hspace{0.17em}}c=b,$

${\mathrm{log}}_{a}b=\frac{{\mathrm{log}}_{b}b}{{\mathrm{log}}_{b}a}=\frac{1}{{\mathrm{log}}_{b}a}$

Heron’s Formula

$A=\sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}$

where $\text{\hspace{0.17em}}s=\frac{a+b+c}{2}$

Proof:

Let $\text{\hspace{0.17em}}a,$ $b,$ and $\text{\hspace{0.17em}}c\text{\hspace{0.17em}}$ be the sides of a triangle, and $\text{\hspace{0.17em}}h\text{\hspace{0.17em}}$ be the height.

So $\text{\hspace{0.17em}}s=\frac{a+b+c}{2}$ .

We can further name the parts of the base in each triangle established by the height such that $\text{\hspace{0.17em}}p+q=c.$

Using the Pythagorean Theorem, $\text{\hspace{0.17em}}{h}^{2}+{p}^{2}={a}^{2}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{h}^{2}+{q}^{2}={b}^{2}.$

Since $\text{\hspace{0.17em}}q=c-p,$ then $\text{\hspace{0.17em}}{q}^{2}={\left(c-p\right)}^{2}.\text{\hspace{0.17em}}$ Expanding, we find that $\text{\hspace{0.17em}}{q}^{2}={c}^{2}-2cp+{p}^{2}.$

We can then add $\text{\hspace{0.17em}}{h}^{2}\text{\hspace{0.17em}}$ to each side of the equation to get $\text{\hspace{0.17em}}{h}^{2}+{q}^{2}={h}^{2}+{c}^{2}-2cp+{p}^{2}.$

Substitute this result into the equation $\text{\hspace{0.17em}}{h}^{2}+{q}^{2}={b}^{2}\text{\hspace{0.17em}}$ yields $\text{\hspace{0.17em}}{b}^{2}={h}^{2}+{c}^{2}-2cp+{p}^{2}.$

Then replacing $\text{\hspace{0.17em}}{h}^{2}+{p}^{2}\text{\hspace{0.17em}}$ with $\text{\hspace{0.17em}}{a}^{2}\text{\hspace{0.17em}}$ gives $\text{\hspace{0.17em}}{b}^{2}={a}^{2}-2cp+{c}^{2}.$

Solve for $\text{\hspace{0.17em}}p\text{\hspace{0.17em}}$ to get

$p=\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2c}$

Since $\text{\hspace{0.17em}}{h}^{2}={a}^{2}-{p}^{2},$ we get an expression in terms of $\text{\hspace{0.17em}}a,$ $b,$ and $\text{\hspace{0.17em}}c.$

$\begin{array}{ccc}\hfill {h}^{2}& =& {a}^{2}-{p}^{2}\hfill \\ & =& \left(a+p\right)\left(a-p\right)\hfill \\ & =& \left[a+\frac{\left({a}^{2}+{c}^{2}-{b}^{2}\right)}{2c}\right]\left[a-\frac{\left({a}^{2}+{c}^{2}-{b}^{2}\right)}{2c}\right]\hfill \\ & =& \frac{\left(2ac+{a}^{2}+{c}^{2}-{b}^{2}\right)\left(2ac-{a}^{2}-{c}^{2}+{b}^{2}\right)}{4{c}^{2}}\hfill \\ & =& \frac{\left({\left(a+c\right)}^{2}-{b}^{2}\right)\left({b}^{2}-{\left(a-c\right)}^{2}\right)}{4{c}^{2}}\hfill \\ & =& \frac{\left(a+b+c\right)\left(a+c-b\right)\left(b+a-c\right)\left(b-a+c\right)}{4{c}^{2}}\hfill \\ & =& \frac{\left(a+b+c\right)\left(-a+b+c\right)\left(a-b+c\right)\left(a+b-c\right)}{4{c}^{2}}\hfill \\ & =& \frac{2s\cdot \left(2s-a\right)\cdot \left(2s-b\right)\left(2s-c\right)}{4{c}^{2}}\hfill \end{array}$

Therefore,

$\begin{array}{ccc}\hfill {h}^{2}& =& \frac{4s\left(s-a\right)\left(s-b\right)\left(s-c\right)}{{c}^{2}}\hfill \\ \hfill h& =& \frac{2\sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}}{c}\hfill \end{array}$

And since $\text{\hspace{0.17em}}A=\frac{1}{2}ch,$ then

$\begin{array}{ccc}\hfill A& =& \frac{1}{2}c\frac{2\sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}}{c}\hfill \\ & =& \sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}\hfill \end{array}$

Properties of the Dot Product

$u·v=v·u$

Proof:

$\begin{array}{cc}\hfill u·v& =⟨{u}_{1},{u}_{2},...{u}_{n}⟩·⟨{v}_{1},{v}_{2},...{v}_{n}⟩\hfill \\ & ={u}_{1}{v}_{1}+{u}_{2}{v}_{2}+...+{u}_{n}{v}_{n}\hfill \\ & ={v}_{1}{u}_{1}+{v}_{2}{u}_{2}+...+{v}_{n}{v}_{n}\hfill \\ & =⟨{v}_{1},{v}_{2},...{v}_{n}⟩·⟨{u}_{1},{u}_{2},...{u}_{n}⟩\hfill \\ & =v·u\hfill \end{array}$

$u·\left(v+w\right)=u·v+u·w$

Proof:

$\begin{array}{cc}\hfill u·\left(v+w\right)& =⟨{u}_{1},{u}_{2},...{u}_{n}⟩·\left(⟨{v}_{1},{v}_{2},...{v}_{n}⟩+⟨{w}_{1},{w}_{2},...{w}_{n}⟩\right)\hfill \\ & =⟨{u}_{1},{u}_{2},...{u}_{n}⟩·⟨{v}_{1}+{w}_{1},{v}_{2}+{w}_{2},...{v}_{n}+{w}_{n}⟩\hfill \\ & =⟨{u}_{1}\left({v}_{1}+{w}_{1}\right),{u}_{2}\left({v}_{2}+{w}_{2}\right),...{u}_{n}\left({v}_{n}+{w}_{n}\right)⟩\hfill \\ & =⟨{u}_{1}{v}_{1}+{u}_{1}{w}_{1},{u}_{2}{v}_{2}+{u}_{2}{w}_{2},...{u}_{n}{v}_{n}+{u}_{n}{w}_{n}⟩\hfill \\ & =⟨{u}_{1}{v}_{1},{u}_{2}{v}_{2},...,{u}_{n}{v}_{n}⟩+⟨{u}_{1}{w}_{1},{u}_{2}{w}_{2},...,{u}_{n}{w}_{n}⟩\hfill \\ & =⟨{u}_{1},{u}_{2},...{u}_{n}⟩·⟨{v}_{1},{v}_{2},...{v}_{n}⟩+⟨{u}_{1},{u}_{2},...{u}_{n}⟩·⟨{w}_{1},{w}_{2},...{w}_{n}⟩\hfill \\ & =u·v+u·w\hfill \end{array}$

$u·u={|u|}^{2}$

Proof:

$\begin{array}{cc}\hfill u·u& =⟨{u}_{1},{u}_{2},...{u}_{n}⟩·⟨{u}_{1},{u}_{2},...{u}_{n}⟩\hfill \\ & ={u}_{1}{u}_{1}+{u}_{2}{u}_{2}+...+{u}_{n}{u}_{n}\hfill \\ & ={u}_{1}{}^{2}+{u}_{2}{}^{2}+...+{u}_{n}{}^{2}\hfill \\ & =|⟨{u}_{1},{u}_{2},...{u}_{n}⟩{|}^{2}\hfill \\ & =v·u\hfill \end{array}$

Standard Form of the Ellipse centered at the Origin

$1=\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$

Derivation

An ellipse consists of all the points for which the sum of distances from two foci is constant:

$\sqrt{{\left(x-\left(-c\right)\right)}^{2}+{\left(y-0\right)}^{2}}+\sqrt{{\left(x-c\right)}^{2}+{\left(y-0\right)}^{2}}=\text{constant}$

Consider a vertex.

Then, $\text{\hspace{0.17em}}\sqrt{{\left(x-\left(-c\right)\right)}^{2}+{\left(y-0\right)}^{2}}+\sqrt{{\left(x-c\right)}^{2}+{\left(y-0\right)}^{2}}=2a$

Consider a covertex.

Then $\text{\hspace{0.17em}}{b}^{2}+{c}^{2}={a}^{2}.$

$\begin{array}{ccc}\hfill \sqrt{{\left(x-\left(-c\right)\right)}^{2}+{\left(y-0\right)}^{2}}+\sqrt{{\left(x-c\right)}^{2}+{\left(y-0\right)}^{2}}& =& 2a\hfill \\ \hfill \sqrt{{\left(x+c\right)}^{2}+{y}^{2}}& =& 2a-\sqrt{{\left(x-c\right)}^{2}+{y}^{2}}\hfill \\ \hfill {\left(x+c\right)}^{2}+{y}^{2}& =& {\left(2a-\sqrt{{\left(x-c\right)}^{2}+{y}^{2}}\right)}^{2}\hfill \\ \hfill {x}^{2}+2cx+{c}^{2}+{y}^{2}& =& 4{a}^{2}-4a\sqrt{{\left(x-c\right)}^{2}+{y}^{2}}+{\left(x-c\right)}^{2}+{y}^{2}\hfill \\ \hfill {x}^{2}+2cx+{c}^{2}+{y}^{2}& =& 4{a}^{2}-4a\sqrt{{\left(x-c\right)}^{2}+{y}^{2}}+{x}^{2}-2cx+{y}^{2}\hfill \\ \hfill 2cx& =& 4{a}^{2}-4a\sqrt{{\left(x-c\right)}^{2}+{y}^{2}}-2cx\hfill \\ \hfill 4cx-4{a}^{2}& =& 4a\sqrt{{\left(x-c\right)}^{2}+{y}^{2}}\hfill \\ \hfill -\frac{1}{4a}\left(4cx-4{a}^{2}\right)& =& \sqrt{{\left(x-c\right)}^{2}+{y}^{2}}\hfill \\ \hfill a-\frac{c}{a}x& =& \sqrt{{\left(x-c\right)}^{2}+{y}^{2}}\hfill \\ \hfill {a}^{2}-2xc+\frac{{c}^{2}}{{a}^{2}}{x}^{2}& =& {\left(x-c\right)}^{2}+{y}^{2}\hfill \\ \hfill {a}^{2}-2xc+\frac{{c}^{2}}{{a}^{2}}{x}^{2}& =& {x}^{2}-2xc+{c}^{2}+{y}^{2}\hfill \\ \hfill {a}^{2}+\frac{{c}^{2}}{{a}^{2}}{x}^{2}& =& {x}^{2}+{c}^{2}+{y}^{2}\hfill \\ \hfill {a}^{2}+\frac{{c}^{2}}{{a}^{2}}{x}^{2}& =& {x}^{2}+{c}^{2}+{y}^{2}\hfill \\ \hfill {a}^{2}-{c}^{2}& =& {x}^{2}-\frac{{c}^{2}}{{a}^{2}}{x}^{2}+{y}^{2}\hfill \\ \hfill {a}^{2}-{c}^{2}& =& {x}^{2}\left(1-\frac{{c}^{2}}{{a}^{2}}\right)+{y}^{2}\hfill \end{array}$

Let $\text{\hspace{0.17em}}1=\frac{{a}^{2}}{{a}^{2}}.$

$\begin{array}{ccc}\hfill {a}^{2}-{c}^{2}& =& {x}^{2}\left(\frac{{a}^{2}-{c}^{2}}{{a}^{2}}\right)+{y}^{2}\hfill \\ \hfill 1& =& \frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{a}^{2}-{c}^{2}}\hfill \end{array}$

Because $\text{\hspace{0.17em}}{b}^{2}+{c}^{2}={a}^{2},$ then $\text{\hspace{0.17em}}{b}^{2}={a}^{2}-{c}^{2}.$

$\begin{array}{ccc}\hfill 1& =& \frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{a}^{2}-{c}^{2}}\hfill \\ \hfill 1& =& \frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}\hfill \end{array}$

Standard Form of the Hyperbola

$1=\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$

Derivation

A hyperbola is the set of all points in a plane such that the absolute value of the difference of the distances between two fixed points is constant.

Diagram 1: The difference of the distances from Point P to the foci is constant:

$\sqrt{{\left(x-\left(-c\right)\right)}^{2}+{\left(y-0\right)}^{2}}-\sqrt{{\left(x-c\right)}^{2}+{\left(y-0\right)}^{2}}=\text{constant}$

Diagram 2: When the point is a vertex, the difference is $\text{\hspace{0.17em}}2a.$

$\sqrt{{\left(x-\left(-c\right)\right)}^{2}+{\left(y-0\right)}^{2}}-\sqrt{{\left(x-c\right)}^{2}+{\left(y-0\right)}^{2}}=2a$

$\begin{array}{ccc}\hfill \sqrt{{\left(x-\left(-c\right)\right)}^{2}+{\left(y-0\right)}^{2}}-\sqrt{{\left(x-c\right)}^{2}+{\left(y-0\right)}^{2}}& =& 2a\hfill \\ \hfill \sqrt{{\left(x+c\right)}^{2}+{y}^{2}}-\sqrt{{\left(x-c\right)}^{2}+{y}^{2}}& =& 2a\hfill \\ \hfill \sqrt{{\left(x+c\right)}^{2}+{y}^{2}}& =& 2a+\sqrt{{\left(x-c\right)}^{2}+{y}^{2}}\hfill \\ \hfill {\left(x+c\right)}^{2}+{y}^{2}& =& \left(2a+\sqrt{{\left(x-c\right)}^{2}+{y}^{2}}\right)\hfill \\ \hfill {x}^{2}+2cx+{c}^{2}+{y}^{2}& =& 4{a}^{2}+4a\sqrt{{\left(x-c\right)}^{2}}+{y}^{2}\hfill \\ \hfill {x}^{2}+2cx+{c}^{2}+{y}^{2}& =& 4{a}^{2}+4a\sqrt{{\left(x-c\right)}^{2}+{y}^{2}}+{x}^{2}-2cx+{y}^{2}\hfill \\ \hfill 2cx& =& 4{a}^{2}+4a\sqrt{{\left(x-c\right)}^{2}+{y}^{2}}-2cx\hfill \\ \hfill 4cx-4{a}^{2}& =& 4a\sqrt{{\left(x-c\right)}^{2}+{y}^{2}}\hfill \\ \hfill cx-{a}^{2}& =& a\sqrt{{\left(x-c\right)}^{2}+{y}^{2}}\hfill \\ \hfill {\left(cx-{a}^{2}\right)}^{2}& =& {a}^{2}\left({\left(x-c\right)}^{2}+{y}^{2}\right)\hfill \\ \hfill {c}^{2}{x}^{2}-2{a}^{2}{c}^{2}{x}^{2}+{a}^{4}& =& {a}^{2}{x}^{2}-2{a}^{2}{c}^{2}{x}^{2}+{a}^{2}{c}^{2}+{a}^{2}{y}^{2}\hfill \\ \hfill {c}^{2}{x}^{2}+{a}^{4}& =& {a}^{2}{x}^{2}+{a}^{2}{c}^{2}+{a}^{2}{y}^{2}\hfill \\ \hfill {a}^{4}-{a}^{2}{c}^{2}& =& {a}^{2}{x}^{2}-{c}^{2}{x}^{2}+{a}^{2}{y}^{2}\hfill \\ \hfill {a}^{2}\left({a}^{2}-{c}^{2}\right)& =& \left({a}^{2}-{c}^{2}\right){x}^{2}+{a}^{2}{y}^{2}\hfill \\ \hfill {a}^{2}\left({a}^{2}-{c}^{2}\right)& =& \left({c}^{2}-{a}^{2}\right){x}^{2}-{a}^{2}{y}^{2}\hfill \end{array}$

Define $\text{\hspace{0.17em}}b\text{\hspace{0.17em}}$ as a positive number such that $\text{\hspace{0.17em}}{b}^{2}={c}^{2}-{a}^{2}.$

$\begin{array}{ccc}\hfill {a}^{2}{b}^{2}& =& {b}^{2}{x}^{2}-{a}^{2}{y}^{2}\hfill \\ \hfill \frac{{a}^{2}{b}^{2}}{{a}^{2}{b}^{2}}& =& \frac{{b}^{2}{x}^{2}}{{a}^{2}{b}^{2}}-\frac{{a}^{2}{y}^{2}}{{a}^{2}{b}^{2}}\hfill \\ \hfill 1& =& \frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}\hfill \end{array}$

Trigonometric identities

 Pythagorean Identity $\begin{array}{l}{\mathrm{cos}}^{2}t+{\mathrm{sin}}^{2}t=1\\ 1+{\mathrm{tan}}^{2}t={\mathrm{sec}}^{2}t\\ 1+{\mathrm{cot}}^{2}t={\mathrm{csc}}^{2}t\end{array}$ Even-Odd Identities $\begin{array}{l}\mathrm{cos}\left(-t\right)=cos\text{\hspace{0.17em}}t\hfill \\ \mathrm{sec}\left(-t\right)=\mathrm{sec}\text{\hspace{0.17em}}t\hfill \\ \mathrm{sin}\left(-t\right)=-\mathrm{sin}\text{\hspace{0.17em}}t\hfill \\ \mathrm{tan}\left(-t\right)=-\mathrm{tan}\text{\hspace{0.17em}}t\hfill \\ \mathrm{csc}\left(-t\right)=-\mathrm{csc}\text{\hspace{0.17em}}t\hfill \\ \mathrm{cot}\left(-t\right)=-\mathrm{cot}\text{\hspace{0.17em}}t\hfill \end{array}$ Cofunction Identities $\begin{array}{l}\hfill \\ \mathrm{cos}\text{\hspace{0.17em}}t=\mathrm{sin}\left(\frac{\pi }{2}-t\right)\hfill \\ \mathrm{sin}\text{\hspace{0.17em}}t=\mathrm{cos}\left(\frac{\pi }{2}-t\right)\hfill \\ \mathrm{tan}\text{\hspace{0.17em}}t=\mathrm{cot}\left(\frac{\pi }{2}-t\right)\hfill \\ \mathrm{cot}\text{\hspace{0.17em}}t=\mathrm{tan}\left(\frac{\pi }{2}-t\right)\hfill \\ \mathrm{sec}\text{\hspace{0.17em}}t=\mathrm{csc}\left(\frac{\pi }{2}-t\right)\hfill \\ \mathrm{csc}\text{\hspace{0.17em}}t=\mathrm{sec}\left(\frac{\pi }{2}-t\right)\hfill \end{array}$ Fundamental Identities $\begin{array}{l}\mathrm{tan}\text{\hspace{0.17em}}t=\frac{\mathrm{sin}\text{\hspace{0.17em}}t}{\mathrm{cos}\text{\hspace{0.17em}}t}\hfill \\ \mathrm{sec}\text{\hspace{0.17em}}t=\frac{1}{\mathrm{cos}\text{\hspace{0.17em}}t}\hfill \\ \mathrm{csc}\text{\hspace{0.17em}}t=\frac{1}{\mathrm{sin}\text{\hspace{0.17em}}t}\hfill \\ cot\text{\hspace{0.17em}}t=\frac{1}{\text{tan}\text{\hspace{0.17em}}t}=\frac{\text{cos}\text{\hspace{0.17em}}t}{\text{sin}\text{\hspace{0.17em}}t}\hfill \end{array}$ Sum and Difference Identities $\begin{array}{l}\mathrm{cos}\left(\alpha +\beta \right)=\mathrm{cos}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\beta -\mathrm{sin}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\beta \hfill \\ \mathrm{cos}\left(\alpha -\beta \right)=\mathrm{cos}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\beta +\mathrm{sin}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\beta \hfill \\ \mathrm{sin}\left(\alpha +\beta \right)=\mathrm{sin}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\beta +\mathrm{cos}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\beta \hfill \\ \mathrm{sin}\left(\alpha -\beta \right)=\mathrm{sin}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\beta -\mathrm{cos}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\beta \hfill \\ \mathrm{tan}\left(\alpha +\beta \right)=\frac{\mathrm{tan}\text{\hspace{0.17em}}\alpha +\mathrm{tan}\text{\hspace{0.17em}}\beta }{1-\mathrm{tan}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\beta }\hfill \\ \mathrm{tan}\left(\alpha -\beta \right)=\frac{\mathrm{tan}\text{\hspace{0.17em}}\alpha -\mathrm{tan}\text{\hspace{0.17em}}\beta }{1+\mathrm{tan}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\beta }\hfill \end{array}$ Double-Angle Formulas $\begin{array}{l}\mathrm{sin}\left(2\theta \right)=2\mathrm{sin}\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\theta \hfill \\ \mathrm{cos}\left(2\theta \right)={\mathrm{cos}}^{2}\theta -{\mathrm{sin}}^{2}\theta \hfill \\ \mathrm{cos}\left(2\theta \right)=1-2{\mathrm{sin}}^{2}\theta \hfill \\ \mathrm{cos}\left(2\theta \right)=2{\mathrm{cos}}^{2}\theta -1\hfill \\ \mathrm{tan}\left(2\theta \right)=\frac{2\mathrm{tan}\text{\hspace{0.17em}}\theta }{1-{\mathrm{tan}}^{2}\theta }\hfill \end{array}$ Half-Angle Formulas $\begin{array}{l}\hfill \\ \mathrm{sin}\frac{\alpha }{2}=±\sqrt{\frac{1-\mathrm{cos}\text{\hspace{0.17em}}\alpha }{2}}\hfill \\ \mathrm{cos}\frac{\alpha }{2}=±\sqrt{\frac{1+\mathrm{cos}\text{\hspace{0.17em}}\alpha }{2}}\hfill \\ \mathrm{tan}\frac{\alpha }{2}=±\sqrt{\frac{1-\mathrm{cos}\text{\hspace{0.17em}}\alpha }{1+\mathrm{cos}\text{\hspace{0.17em}}\alpha }}\hfill \\ \mathrm{tan}\frac{\alpha }{2}=\frac{\mathrm{sin}\text{\hspace{0.17em}}\alpha }{1+\mathrm{cos}\text{\hspace{0.17em}}\alpha }\hfill \\ \mathrm{tan}\frac{\alpha }{2}=\frac{1-\mathrm{cos}\text{\hspace{0.17em}}\alpha }{\mathrm{sin}\text{\hspace{0.17em}}\alpha }\hfill \end{array}$ Reduction Formulas $\begin{array}{l}\hfill \\ {\mathrm{sin}}^{2}\theta =\frac{1-\mathrm{cos}\left(2\theta \right)}{2}\hfill \\ {\mathrm{cos}}^{2}\theta =\frac{1+\mathrm{cos}\left(2\theta \right)}{2}\hfill \\ {\mathrm{tan}}^{2}\theta =\frac{1-\mathrm{cos}\left(2\theta \right)}{1+\mathrm{cos}\left(2\theta \right)}\hfill \end{array}$ Product-to-Sum Formulas $\begin{array}{l}\hfill \\ \mathrm{cos}\alpha \mathrm{cos}\beta =\frac{1}{2}\left[\mathrm{cos}\left(\alpha -\beta \right)+\mathrm{cos}\left(\alpha +\beta \right)\right]\hfill \\ \mathrm{sin}\alpha \mathrm{cos}\beta =\frac{1}{2}\left[\mathrm{sin}\left(\alpha +\beta \right)+\mathrm{sin}\left(\alpha -\beta \right)\right]\hfill \\ \mathrm{sin}\alpha \mathrm{sin}\beta =\frac{1}{2}\left[\mathrm{cos}\left(\alpha -\beta \right)-\mathrm{cos}\left(\alpha +\beta \right)\right]\hfill \\ \mathrm{cos}\alpha \mathrm{sin}\beta =\frac{1}{2}\left[\mathrm{sin}\left(\alpha +\beta \right)-\mathrm{sin}\left(\alpha -\beta \right)\right]\hfill \end{array}$ Sum-to-Product Formulas $\begin{array}{l}\hfill \\ \mathrm{sin}\alpha +\mathrm{sin}\beta =2\mathrm{sin}\left(\frac{\alpha +\beta }{2}\right)\mathrm{cos}\left(\frac{\alpha -\beta }{2}\right)\hfill \\ \mathrm{sin}\alpha -\mathrm{sin}\beta =2\mathrm{sin}\left(\frac{\alpha -\beta }{2}\right)\mathrm{cos}\left(\frac{\alpha +\beta }{2}\right)\hfill \\ \mathrm{cos}\alpha -\mathrm{cos}\beta =-2\mathrm{sin}\left(\frac{\alpha +\beta }{2}\right)\mathrm{sin}\left(\frac{\alpha -\beta }{2}\right)\hfill \\ \mathrm{cos}\alpha +\mathrm{cos}\beta =2\mathrm{cos}\left(\frac{\alpha +\beta }{2}\right)\mathrm{cos}\left(\frac{\alpha -\beta }{2}\right)\hfill \end{array}$ Law of Sines $\begin{array}{l}\frac{\mathrm{sin}\text{\hspace{0.17em}}\alpha }{a}=\frac{\mathrm{sin}\text{\hspace{0.17em}}\beta }{b}=\frac{\mathrm{sin}\text{\hspace{0.17em}}\gamma }{c}\hfill \\ \frac{a}{\mathrm{sin}\text{\hspace{0.17em}}\alpha }=\frac{b}{\mathrm{sin}\text{\hspace{0.17em}}\beta }=\frac{c}{\mathrm{sin}\text{\hspace{0.17em}}\gamma }\hfill \end{array}$ Law of Cosines $\begin{array}{c}{a}^{2}={b}^{2}+{c}^{2}-2bc\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\alpha \\ {b}^{2}={a}^{2}+{c}^{2}-2ac\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\beta \\ {c}^{2}={a}^{2}+{b}^{2}-2ab\text{\hspace{0.17em}}\text{cos}\text{\hspace{0.17em}}\gamma \end{array}$

Trigonometric functions

Unit Circle

Angle $0$
Cosine 1 $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{1}{2}$ 0
Sine 0 $\frac{1}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{3}}{2}$ 1
Tangent 0 $\frac{\sqrt{3}}{3}$ 1 $\sqrt{3}$ Undefined
Secant 1 $\frac{2\sqrt{3}}{3}$ $\sqrt{2}$ 2 Undefined
Cosecant Undefined 2 $\sqrt{2}$ $\frac{2\sqrt{3}}{3}$ 1
Cotangent Undefined $\sqrt{3}$ 1 $\frac{\sqrt{3}}{3}$ 0

A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
The sequence is {1,-1,1-1.....} has
how can we solve this problem
Sin(A+B) = sinBcosA+cosBsinA
Prove it
Eseka
Eseka
hi
Joel
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
7.5 and 37.5
Nando
find the sum of 28th term of the AP 3+10+17+---------
I think you should say "28 terms" instead of "28th term"
Vedant
the 28th term is 175
Nando
192
Kenneth
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n
write down the polynomial function with root 1/3,2,-3 with solution
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
what is the answer to dividing negative index
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
give me the waec 2019 questions  By By Edward Biton By   By By Rhodes  