# 3.5 Tree and venn diagrams  (Page 2/10)

 Page 2 / 10

## Try it

In a standard deck, there are 52 cards. Twelve cards are face cards ( F ) and 40 cards are not face cards ( N ). Draw two cards, one at a time, without replacement. The tree diagram is labeled with all possible probabilities.

1. Find P ( FN OR NF ).
2. Find P ( N | F ).
3. Find P (at most one face card).
Hint: "At most one face card" means zero or one face card.
4. Find P (at least on face card).
Hint: "At least one face card" means one or two face cards.
1. P ( FN OR NF ) =
2. P ( N | F ) = $\frac{40}{51}$
3. P (at most one face card) = = $\frac{2,520}{2,652}$
4. P (at least one face card) = = $\frac{\text{1,092}}{\text{2,652}}$

A litter of kittens available for adoption at the Humane Society has four tabby kittens and five black kittens. A family comes in and randomly selects two kittens (without replacement) for adoption.

1. What is the probability that both kittens are tabby?
a. $\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)$ b. $\left(\frac{4}{9}\right)\left(\frac{4}{9}\right)$ c. $\left(\frac{4}{9}\right)\left(\frac{3}{8}\right)$ d. $\left(\frac{4}{9}\right)\left(\frac{5}{9}\right)$
2. What is the probability that one kitten of each coloring is selected?
a. $\left(\frac{4}{9}\right)\left(\frac{5}{9}\right)$ b. $\left(\frac{4}{9}\right)\left(\frac{5}{8}\right)$ c. $\left(\frac{4}{9}\right)\left(\frac{5}{9}\right)+\left(\frac{5}{9}\right)\left(\frac{4}{9}\right)$ d. $\left(\frac{4}{9}\right)\left(\frac{5}{8}\right)+\left(\frac{5}{9}\right)\left(\frac{4}{8}\right)$
3. What is the probability that a tabby is chosen as the second kitten when a black kitten was chosen as the first?
4. What is the probability of choosing two kittens of the same color?

a. c, b. d, c. $\frac{4}{8}$ , d. $\frac{32}{72}$

## Try it

Suppose there are four red balls and three yellow balls in a box. Three balls are drawn from the box without replacement. What is the probability that one ball of each coloring is selected?

$\left(\frac{4}{7}\right)\left(\frac{3}{6}\right)$ + $\left(\frac{3}{7}\right)\left(\frac{4}{6}\right)$

## Venn diagram

A Venn diagram is a picture that represents the outcomes of an experiment. It generally consists of a box that represents the sample space S together with circles or ovals. The circles or ovals represent events.

Suppose an experiment has the outcomes 1, 2, 3, ... , 12 where each outcome has an equal chance of occurring. Let event A = {1, 2, 3, 4, 5, 6} and event B = {6, 7, 8, 9}. Then A AND B = {6} and A  OR  B = {1, 2, 3, 4, 5, 6, 7, 8, 9}. The Venn diagram is as follows:

## Try it

Suppose an experiment has outcomes black, white, red, orange, yellow, green, blue, and purple, where each outcome has an equal chance of occurring. Let event C = {green, blue, purple} and event P = {red, yellow, blue}. Then C AND P = {blue} and C OR P = {green, blue, purple, red, yellow}. Draw a Venn diagram representing this situation.

Flip two fair coins. Let A = tails on the first coin. Let B = tails on the second coin. Then A = { TT , TH } and B = { TT , HT }. Therefore, A AND B = { TT }. A OR B = { TH , TT , HT }.

The sample space when you flip two fair coins is X = { HH , HT , TH , TT }. The outcome HH is in NEITHER A NOR B . The Venn diagram is as follows:

## Try it

Roll a fair, six-sided die. Let A = a prime number of dots is rolled. Let B = an odd number of dots is rolled. Then A = {2, 3, 5} and B = {1, 3, 5}. Therefore, A AND B = {3, 5}. A OR B = {1, 2, 3, 5}. The sample space for rolling a fair die is S = {1, 2, 3, 4, 5, 6}. Draw a Venn diagram representing this situation.

Forty percent of the students at a local college belong to a club and 50% work part time. Five percent of the students work part time and belong to a club. Draw a Venn diagram showing the relationships. Let C = student belongs to a club and PT = student works part time.

If a student is selected at random, find

• the probability that the student belongs to a club. P ( C ) = 0.40
• the probability that the student works part time. P ( PT ) = 0.50
• the probability that the student belongs to a club AND works part time. P ( C AND PT ) = 0.05
• the probability that the student belongs to a club given that the student works part time.
• the probability that the student belongs to a club OR works part time. P ( C OR PT ) = P ( C ) + P ( PT ) - P ( C AND PT ) = 0.40 + 0.50 - 0.05 = 0.85

what is standard deviation?
It is the measure of the variation of certain values from the Mean (Center) of a frequency distribution of sample values for a particular Variable.
Dominic
Yeah....the simplest one
IRFAN
what is the number of x
10
Elicia
Javed Arif
Jawed
how will you know if a group of data set is a sample or population
population is the whole set and the sample is the subset of population.
umair
if the data set is drawn out of a larger set it is a sample and if it is itself the whole complete set it can be treated as population.
Bhavika
hello everyone if I have the data set which contains measurements of each part during 10 years, may I say that it's the population or it's still a sample because it doesn't contain my measurements in the future? thanks
Alexander
Pls I hv a problem on t test is there anyone who can help?
Peggy
Dominic
Bhavika is right
Dominic
what is the problem peggy?
Bhavika
hi
Sandeep
Hello
hi
Bhavika
hii Bhavika
Dar
Hi eny population has a special definition. if that data set had all of characteristics of definition, that is population. otherwise that is a sample
Hoshyar
three coins are tossed. find the probability of no head
three coins are tossed consecutively or what ?
umair
umair
or .125 is the probability of getting no head when 3 coins are tossed
umair
🤣🤣🤣
Simone
what is two tailed test
if the diameter will be greater than 3 cm then the bullet will not fit in the barrel of the gun so you are bothered for both the sides.
umair
in this test you are worried on both the ends
umair
lets say you are designing a bullet for thw gun od diameter equals 3cm.if the diameter of the bullet is less than 3 cm then you wont be able to shoot it
umair
In order to apply weddles rule for numerical integration what is minimum number of ordinates
excuse me?
Gabriel
why?
didn't understand the question though.
Gabriel
which question? ?
We have rules of numerical integration like Trapezoidal rule, Simpson's 1/3 and 3/8 rules, Boole's rule and Weddle rule for n =1,2,3,4 and 6 but for n=5?
John
geometric mean of two numbers 4 and 16 is:
10
umair
really
iphone
quartile deviation of 8 8 8 is:
iphone
sorry 8 is the geometric mean of 4,16
umair
quartile deviation of 8 8 8 is
iphone
can you please expalin the whole question ?
umair
mcq
iphone
h
iphone
can you please post the picture of that ?
umair
how
iphone
hello
John
10 now
John
how to find out the value
can you be more specific ?
umair
yes
KrishnaReddy
what is the difference between inferential and descriptive statistics
descriptive statistics gives you the result on the the data like you can calculate various things like variance,mean,median etc. however, inferential stats is involved in prediction of future trends using the previous stored data.
umair
if you need more help i am up for the help.
umair
Thanks a lot
Anjali
Inferential Statistics involves drawing conclusions on a population based on analysis of a sample. Descriptive statistics summarises or describes your current data as numerical calculations or graphs.
fred
my pleasure😊. Helping others offers me satisfaction 😊
umair
for poisson distribution mean............variance.
both are equal to mu
Faizan
mean=variance
Faizan
what is a variable
something that changes
Festus
why we only calculate 4 moment of mean? asked in papers.
why we only 4 moment of mean ? asked in BA exam
Faizan
Hello, can you please share the possible questions that are likely to be examined under the topic: regression and correlation analysis.
Refiloe
for normal distribution mean is 2 & variance is 4 find mu 4?
repeat quastion again
Yusuf
find mu 4. it can be wrong but want to prove how.
Faizan
for a normal distribution if mu 4 is 12 then find mu 3?
Question hi wrong ha
Tahir
ye BA mcqs me aya he teen he. 2dafa aya he
Faizan
if X is normally distributed. (n,b). then its mean deviation is?
Faizan
The answer is zero, because all odd ordered central moments of a normal distribution are Zero.
nikita
which question is zero
Faizan
sorry it is (5,16) in place of (n,b)
Faizan
I got. thanks. it is zero.
Faizan
a random variable having binomial distribution is?
Bokaho