# 3.2 Independent and mutually exclusive events  (Page 2/23)

 Page 6 / 23

## Try it

A box has two balls, one white and one red. We select one ball, put it back in the box, and select a second ball (sampling with replacement). Let T be the event of getting the white ball twice, F the event of picking the white ball first, S the event of picking the white ball in the second drawing.

1. Compute P ( T ).
2. Compute P ( T | F ).
3. Are T and F independent?.
4. Are F and S mutually exclusive?
5. Are F and S independent?
1. P ( T ) = $\frac{1}{4}$
2. P ( T | F ) = $\frac{1}{2}$
3. No
4. No
5. Yes

Lopez, Shane, Preety Sidhu. “U.S. Teachers Love Their Lives, but Struggle in the Workplace.” Gallup Wellbeing, 2013. http://www.gallup.com/poll/161516/teachers-love-lives-struggle-workplace.aspx (accessed May 2, 2013).

Data from Gallup. Available online at www.gallup.com/ (accessed May 2, 2013).

## Chapter review

Two events A and B are independent if the knowledge that one occurred does not affect the chance the other occurs. If two events are not independent, then we say that they are dependent.

In sampling with replacement, each member of a population is replaced after it is picked, so that member has the possibility of being chosen more than once, and the events are considered to be independent. In sampling without replacement, each member of a population may be chosen only once, and the events are considered not to be independent. When events do not share outcomes, they are mutually exclusive of each other.

## Formula review

If A and B are independent, P ( A AND B ) = P ( A ) P ( B ), P ( A | B ) = P ( A ) and P ( B | A ) = P ( B ).

If A and B are mutually exclusive, P ( A OR B ) = P ( A ) + P ( B ) and P ( A AND B ) = 0.

E and F are mutually exclusive events. P ( E ) = 0.4; P ( F ) = 0.5. Find P ( E F ).

J and K are independent events. P ( J | K ) = 0.3. Find P ( J ).

P ( J ) = 0.3

U and V are mutually exclusive events. P ( U ) = 0.26; P ( V ) = 0.37. Find:

1. P ( U AND V ) =
2. P ( U | V ) =
3. P ( U OR V ) =

Q and R are independent events. P ( Q ) = 0.4 and P ( Q  AND  R ) = 0.1. Find P ( R ).

P ( Q AND R ) = P ( Q ) P ( R )

0.1 = (0.4) P ( R )

P ( R ) = 0.25

## Bringing it together

A previous year, the weights of the members of the San Francisco 49ers and the Dallas Cowboys were published in the San Jose Mercury News . The factual data are compiled into [link] .

Shirt# ≤ 210 211–250 251–290 290≤
1–33 21 5 0 0
34–66 6 18 7 4
66–99 6 12 22 5

For the following, suppose that you randomly select one player from the 49ers or Cowboys.

If having a shirt number from one to 33 and weighing at most 210 pounds were independent events, then what should be true about P (Shirt# 1–33|≤ 210 pounds)?

The probability that a male develops some form of cancer in his lifetime is 0.4567. The probability that a male has at least one false positive test result (meaning the test comes back for cancer when the man does not have it) is 0.51. Some of the following questions do not have enough information for you to answer them. Write “not enough information” for those answers. Let C = a man develops cancer in his lifetime and P = man has at least one false positive.

1. P ( C ) = ______
2. P ( P | C ) = ______
3. P ( P | C' ) = ______
4. If a test comes up positive, based upon numerical values, can you assume that man has cancer? Justify numerically and explain why or why not.

1. P ( C ) = 0.4567
2. not enough information
3. not enough information
4. No, because over half (0.51) of men have at least one false positive text

Given events G and H : P ( G ) = 0.43; P ( H ) = 0.26; P ( H AND G ) = 0.14

1. Find P ( H OR G ).
2. Find the probability of the complement of event ( H AND G ).
3. Find the probability of the complement of event ( H OR G ).

Given events J and K : P ( J ) = 0.18; P ( K ) = 0.37; P ( J OR K ) = 0.45

1. Find P ( J AND K ).
2. Find the probability of the complement of event ( J AND K ).
3. Find the probability of the complement of event ( J AND K ).
1. P ( J OR K ) = P ( J ) + P ( K ) − P ( J AND K ); 0.45 = 0.18 + 0.37 - P ( J AND K ); solve to find P ( J AND K ) = 0.10
2. P (NOT ( J AND K )) = 1 - P ( J AND K ) = 1 - 0.10 = 0.90
3. P (NOT ( J OR K )) = 1 - P ( J OR K ) = 1 - 0.45 = 0.55

mean is number that occurs frequently in a giving data
That places the mode and the mean as the same thing. I'd define the mean as the ratio of the total sum of variables to the variable count, and it assigns the variables a similar value across the board.
Samsicker
what is mean
what is normal distribution
What is the uses of sample in real life
pain scales in hospital
Lisa
change of origin and scale
3. If the grades of 40000 students in a course at the Hashemite University are distributed according to N(60,400) Then the number of students with grades less than 75 =*
If a constant value is added to every observation of data, then arithmetic mean is obtained by
sum of AM+Constnt
Fazal
data can be defined as numbers in context. suppose you are given the following set of numbers 18,22,22,20,19,21
what are data
what is mode?
what is statistics
Natasha
statistics is a combination of collect data summraize data analyiz data and interprete data
Ali
what is mode
Natasha
what is statistics
It is the science of analysing numerical data in large quantities, especially for the purpose of inferring proportions in a whole from those in a representative sample.
Bernice
history of statistics
statistics was first used by?
Terseer
if a population has a prevalence of Hypertension 5%, what is the probability of 4 people having hypertension from 8 randomly selected individuals?
Carpet land sales persons average 8000 per weekend sales Steve qantas the firm's vice president proposes a compensation plan with new selling incentives Steve hopes that the results of a trial selling period will enable him to conclude that the compensation plan increases the average sales per sales
Supposed we have Standard deviation 1.56, mean 6.36, sample size 25 and Z-score 1.96 at 95% confidence level, what is the confidence interval?

#### Get Jobilize Job Search Mobile App in your pocket Now! By By By Madison Christian By OpenStax By OpenStax By Robert Murphy By Michael Sag By OpenStax By OpenStax By Madison Christian By John Gabrieli By Jugnu Khan