<< Chapter < Page Chapter >> Page >
This module describes how to calculate the F Ratio and F Distribution based on the hypothesis test for the One-Way ANOVA.

The distribution used for the hypothesis test is a new one. It is called the F distribution, named after Sir Ronald Fisher, an English statistician. The F statistic is a ratio (a fraction). There are two sets of degrees of freedom; one for the numerator and one forthe denominator.

For example, if F follows an F distribution and the degrees of freedom for the numerator are 4 and the degrees of freedom for the denominator are 10, then F ~ F 4 , 10 .

The F distribution is derived from the Student's-t distribution. One-Way ANOVA expands the t -test for comparing more than two groups. The scope of that derivation is beyond the level of this course.

To calculate the F ratio, two estimates of the variance are made.

  1. Variance between samples: An estimate of σ 2 that is the variance of the sample means multiplied by n (when there is equal n). If the samples are different sizes, the variance between samples is weighted toaccount for the different sample sizes. The variance is also called variation due to treatment or explainedvariation.
  2. Variance within samples: An estimate of σ 2 that is the average of the sample variances (also known as a pooled variance). When the sample sizes are different, thevariance within samples is weighted. The variance is also called the variation due to error or unexplained variation.
  • SS between = the sum of squares that represents the variation among the different samples.
  • SS within = the sum of squares that represents the variation within samples that is due to chance.

To find a "sum of squares" means to add together squared quantities which, in some cases, may be weighted. We used sum of squares to calculate the sample variance andthe sample standard deviation in Descriptive Statistics .

MS means "mean square." MS between is the variance between groups and MS within is the variance within groups.

    Calculation of sum of squares and mean square

  • k size 12{k} {} = the number of different groups
  • n j size 12{n rSub { size 8{j} } } {} = the size of the jth size 12{ ital "jth"} {} group
  • s j size 12{s rSub { size 8{j} } } {} = the sum of the values in the jth size 12{ ital "jth"} {} group
  • n size 12{n} {} = total number of all the values combined. (total sample size: n j size 12{ Sum {n rSub { size 8{j} } } } {} )
  • x = one value: x = s j size 12{ Sum {x} = Sum {s rSub { size 8{j} } } } {}
  • Sum of squares of all values from every group combined: x 2 size 12{ Sum {x rSup { size 8{2} } } ={}} {}
  • Between group variability: SS total = x 2 x 2 n size 12{ ital "SS" rSub { size 8{ ital "total"} } = Sum {x rSup { size 8{2} } } - { { left ( Sum {x} right ) rSup { size 8{2} } } over {n} } } {}
  • Total sum of squares: x 2 ( x ) 2 n size 12{ Sum {x rSup { size 8{2} } } - { { \( Sum {x} \) rSup { size 8{2} } } over {n} } } {}
  • Explained variation- sum of squares representing variation among the different samples SS between = [ ( sj ) 2 n j ] ( s j ) 2 n size 12{ ital "SS" rSub { size 8{ ital "between"} } = Sum { \[ { { \( ital "sj" \) rSup { size 8{2} } } over {n rSub { size 8{j} } } } \] } - { { \( Sum {s rSub { size 8{j} } \) rSup { size 8{2} } } } over {n} } } {}
  • Unexplained variation- sum of squares representing variation within samples due to chance: SS within = SS total SS between size 12{ ital "SS" rSub { size 8{ ital "within"} } = ital "SS" rSub { size 8{ ital "total"} } - ital "SS" rSub { size 8{ ital "between"} } } {}
  • df's for different groups (df's for the numerator): df between = k 1 size 12{ ital "df" rSub { size 8{ ital "between"} } =k - 1} {}
  • Equation for errors within samples (df's for the denominator): df within = n k size 12{ ital "df" rSub { size 8{ ital "within"} } = n - k} {}
  • Mean square (variance estimate) explained by the different groups: MS between = SS between df between size 12{ ital "MS" rSub { size 8{ ital "between"} } = { { ital "SS" rSub { size 8{ ital "between"} } } over { ital "df" rSub { size 8{ ital "between"} } } } } {}
  • Mean square (variance estimate) that is due to chance (unexplained): MS within = SS within df within size 12{ ital "MS" rSub { size 8{ ital "within"} } = { { ital "SS" rSub { size 8{ ital "within"} } } over { ital "df" rSub { size 8{ ital "within"} } } } } {}

MS between and MS within can be written as follows:

  • MS between = SS between df between = SS between k 1
  • MS within = SS within df within = SS within n k

The One-Way ANOVA test depends on the fact that MS between can be influenced by population differences among means of the several groups. Since MS within compares values of each group to its own group mean, the fact that group means might be different doesnot affect MS within .

The null hypothesis says that all groups are samples from populations having the same normal distribution. The alternate hypothesis says that at least two of the samplegroups come from populations with different normal distributions. If the null hypothesis is true, MS between and MS within should both estimate the same value.

The null hypothesis says that all the group population means are equal. The hypothesis of equal means implies that the populations have the same normal distribution because it is assumed that the populations are normal and that they have equal variances.

F-ratio or f statistic

F = MS between MS within

If MS between and MS within estimate the same value (following the belief that H o is true), then the F-ratio should be approximately equal to 1. Mostly just sampling errorswould contribute to variations away from 1. As it turns out, MS between consists of the population variance plus a variance produced from the differences between thesamples. MS within is an estimate of the population variance. Since variances are always positive, if the null hypothesis is false, MS between will generally be larger than MS within . Then the F-ratio will be larger than 1.However, if the population effect size is small it is not unlikely that MS within will be larger in a give sample.

The above calculations were done with groups of different sizes. If the groups are the same size, the calculations simplify somewhat and the F ratio can be written as:

F-ratio formula when the groups are the same size

F = n s x _ 2 s 2 pooled

    Where ...

  • n = size 12{n={}} {} the sample size
  • df numerator = k 1 size 12{ ital "df" rSub { size 8{ ital "numerator"} } =k - 1} {}
  • df denominator = n k size 12{ ital "df" rSub { size 8{ ital "denominator"={}} } k \( n - 1 \) =N - k} {}
  • s 2 pooled = the mean of the sample variances (pooled variance)
  • s x 2 = the variance of the sample means

The data is typically put into a table for easy viewing. One-Way ANOVA results are often displayed in this manner by computer software.

Source of Variation Sum of Squares (SS) Degrees of Freedom (df) Mean Square (MS) F
SS(Factor) k - 1 MS(Factor) = SS(Factor)/(k-1) F = MS(Factor)/MS(Error)
SS(Error) n - k MS(Error) = SS(Error)/(n-k)
Total SS(Total) n - 1

Three different diet plans are to be tested for mean weight loss. The entries in the table are the weight losses for the different plans. The One-Way ANOVA table is shown below.

Plan 1 Plan 2 Plan 3
5 3.5 8
4.5 7 4
4 3.5
3 4.5

One-Way ANOVA Table: The formulas for SS(Total), SS(Factor) = SS(Between) and SS(Error) = SS(Within) are shown above. This same information is provided by the TI calculator hypothesis test function ANOVA in STAT TESTS (syntax is ANOVA(L1, L2, L3) where L1, L2, L3 have the data from Plan 1, Plan 2, Plan 3 respectively).

Source of Variation Sum of Squares (SS) Degrees of Freedom (df) Mean Square (MS) F
= SS(Between)
k - 1
= 3 groups - 1
= 2
= SS(Factor)/(k-1)
= 2.2458/2
= 1.1229
F =
= 1.1229/2.9792
= 0.3769
= SS(Within)
= 20.8542
n - k
= 10 total data - 3 groups
= 7
= SS(Error)/(n-k)
= 20.8542/7
= 2.9792
Total SS(Total)
= 2.9792 + 20.8542
n - 1
= 10 total data - 1
= 9

Got questions? Get instant answers now!

The One-Way ANOVA hypothesis test is always right-tailed because larger F-values are way out in the right tail of the F-distribution curve and tend to make us reject H o .


The notation for the F distribution is F ~ F df(num) , df(denom)

where df(num) = df between and df(denom) = df within

The mean for the F distribution is μ = df(num) df(denom) 1

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
1 It is estimated that 30% of all drivers have some kind of medical aid in South Africa. What is the probability that in a sample of 10 drivers: 3.1.1 Exactly 4 will have a medical aid. (8) 3.1.2 At least 2 will have a medical aid. (8) 3.1.3 More than 9 will have a medical aid.
Nerisha Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Collaborative statistics. OpenStax CNX. Jul 03, 2012 Download for free at http://cnx.org/content/col10522/1.40
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Collaborative statistics' conversation and receive update notifications?