<< Chapter < Page Chapter >> Page >

In practice, we rarely know the population standard deviation . In the past, when the sample size was large, this did not present a problem to statisticians. They used the sample standard deviation s as an estimate for σ and proceeded as before to calculate a confidence interval with close enough results. However, statisticians ran into problems when the sample size was small. A small sample size caused inaccuracies in the confidence interval.

William S. Goset (1876–1937) of the Guinness brewery in Dublin, Ireland ran into this problem. His experiments with hops and barley produced very few samples. Just replacing σ with s did not produce accurate results when he tried to calculate a confidence interval. He realized that he could not use a normal distribution for the calculation; he found that the actual distribution depends on the sample size. This problem led him to "discover" what is called the Student's t-distribution . The name comes from the fact that Gosset wrote under the pen name "Student."

Up until the mid-1970s, some statisticians used the normal distribution approximation for large sample sizes and only used the Student's t-distribution only for sample sizes of at most 30. With graphing calculators and computers, the practice now is to use the Student's t-distribution whenever s is used as an estimate for σ .

If you draw a simple random sample of size n from a population that has an approximately a normal distribution with mean μ and unknown population standard deviation σ and calculate the t -score t = x ¯ μ ( s n ) , then the t -scores follow a Student's t-distribution with n – 1 degrees of freedom . The t -score has the same interpretation as the z -score . It measures how far x ¯ is from its mean μ . For each sample size n , there is a different Student's t-distribution.

The degrees of freedom , n – 1 , come from the calculation of the sample standard deviation s . In [link] , we used n deviations ( x x ¯ values ) to calculate s . Because the sum of the deviations is zero, we can find the last deviation once we know the other n – 1 deviations. The other n – 1 deviations can change or vary freely. We call the number n – 1 the degrees of freedom (df).

    Properties of the student's t-distribution

  • The graph for the Student's t-distribution is similar to the standard normal curve.
  • The mean for the Student's t-distribution is zero and the distribution is symmetric about zero.
  • The Student's t-distribution has more probability in its tails than the standard normal distribution because the spread of the t-distribution is greater than the spread of the standard normal. So the graph of the Student's t-distribution will be thicker in the tails and shorter in the center than the graph of the standard normal distribution.
  • The exact shape of the Student's t-distribution depends on the degrees of freedom. As the degrees of freedom increases, the graph of Student's t-distribution becomes more like the graph of the standard normal distribution.
  • The underlying population of individual observations is assumed to be normally distributed with unknown population mean μ and unknown population standard deviation σ . The size of the underlying population is generally not relevant unless it is very small. If it is bell shaped (normal) then the assumption is met and doesn't need discussion. Random sampling is assumed, but that is a completely separate assumption from normality.

Questions & Answers

how do you find z if you only know the area of .0808
Cady Reply
How to take a random sample of 30 observations
Hamna Reply
you can use the random function to generate 30 numbers or observation
smita
How we can calculate chi-square if observed x٫y٫z/frequency 40,30,20 Total/90
Insha Reply
calculate chi-square if observed x,y,z frequency 40,30,20total 90
Insha
find t value,if boysN1, ،32,M1,87.43 S1square,39.40.GirlsN2,34,M2,82.58S2square,40.80 Determine whether the results are significant or insignificant
Insha
The heights of a random sample of 100 entering HRM Freshman of a certain college is 157 cm with a standard deviation of 8cm. test the data against the claim that the overall height of all entering HRM students is 160 cm. previous studies showed that
Crispen Reply
complete the question.. as data given N = 100,mean= 157 cm, std dev = 8 cm..
smita
Z=x-mu/ std dev
smita
find the mean of 25,26,23,25,45,45,58,58,50,25
Asmat Reply
add all n divide by 10 i.e 38
smita
38
hhaa
amit
1 . The “average increase” for all NASDAQ stocks is the:
Jamshaid Reply
STATISTICS IN PRACTICE: This is a group assignment that seeks to reveal students understanding of statistics in general and it’s practical usefulness. The following are the guidelines; 1.      Each group has to identify a natural process or activity and gather data about/from the process. 2.     
Kofi Reply
The diameter of an electric cable,say, X is assumed to be continoues random variable with p.d.f f(x)=6x(1-x); ≤x≤1 a)check that f(X) is p.d.f b) determine a number b such that p(Xb)
Syed Reply
A manufacturer estimate 3% of his output is defective. Find the probability that in a sample of 10 items (a) less than two will be defective (b) more than two will be defective.
ISAIAH Reply
A manufacturer estimates that 3% of his output of a small item is defective. Find the probabilities that in a sample of 10 items (a) less than two and (b) more than two items will be defective.
ISAIAH
use binomial distribution with parameter n=10, p= 0.03, q=0.97
Shivprasad
the standard deviation of a symmetrical distribution is 7.8 . what must be the value of forth moment about the mean in order that distribution be a) leptokurtic b) mesokurtic c) platy kyrtic intrept the obtain value of a b and c
Tushar Reply
A researcher observed that four out of every ten of their products are normally defective. A total of 360 samples of the products were being tested. If the sample is normally distributed and 220 of the products were identified to be faulty, test the hypothesis that the observation of the res
Adepoju Reply
false
HariPrasad
please answer the ques"following values are obtained from life table T15=3,493,601 and e°15=44.6 then expected number of person alive at exact age 15 will be "
vinay
make it clear
Kagimu
how x minus x bar is equal to zero
Kashif Reply
When the mean (X bar) of the sample and the datapoint-in-context (X) from the same sample are the same, then it (X minus X bar) is equal to 0
Johns
e.g. mean of. sample is 3 and one of the datapoints in that sample is also 3
Johns
a numerical value used as a summary measure for a sample such as a sample mean is known as
rana Reply
differentiate between qualitative and quantitative variables
rana Reply
qualitative variables are descriptive while quantitative are numeric variables
Chisomo
please guys what is the formulas use in calculated statistics please iam new here
Yunisa Reply
Dear Yunisa there are different formulas used in statistics depending on wnat you want to measure. It would be helpful if you can be more specific
LAMIN

Get the best Introductory statistics course in your pocket!





Source:  OpenStax, Introductory statistics. OpenStax CNX. May 06, 2016 Download for free at http://legacy.cnx.org/content/col11562/1.18
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introductory statistics' conversation and receive update notifications?

Ask