<< Chapter < Page Chapter >> Page >
(HISTORICAL): Normal Approximation to the Binomial

Historically, being able to compute binomial probabilities was one of the most important applications of the Central Limit Theorem. Binomial probabilities were displayed in a table in a book with a small value for n (say, 20). To calculate the probabilities with large values of n , you had to use the binomial formula which could be very complicated. Using the Normal Approximation to the Binomial simplified the process. To compute the Normal Approximation to the Binomial, take a simple random sample from a population. You must meet the conditionsfor a binomial distribution :

  • there are a certain number n of independent trials
  • the outcomes of any trial are success or failure
  • each trial has the same probability of a success p
Recall that if X is the binomial random variable, then X ~ B ( n , p ) . The shape of the binomial distribution needs to besimilar to the shape of the normal distribution. To ensure this, the quantities n p and n q must both be greater than five ( n p > 5 and n q > 5 ; the approximation is better if they are both greater than or equal to 10). Then the binomial can be approximated by the normal distribution with mean μ = n p and standard deviation σ = n p q . Remember that q = 1 - p . In order to get the best approximation, add 0.5 to x or subtract 0.5 from x ( use x + 0.5 or x - 0.5 ) . The number 0.5 is called the continuity correction factor .

Suppose in a local Kindergarten through 12th grade (K - 12) school district, 53 percent of the population favor a charter school for grades K - 5. A simple random sample of 300 is surveyed.

  1. Find the probability that at least 150 favor a charter school.
  2. Find the probability that at most 160 favor a charter school.
  3. Find the probability that more than 155 favor a charter school.
  4. Find the probability that less than 147 favor a charter school.
  5. Find the probability that exactly 175 favor a charter school.

Let X = the number that favor a charter school for grades K - 5. X ~ B ( n , p ) where n = 300 and p = 0.53 . Since n p > 5 and n q > 5 , use the normal approximation to the binomial. The formulas for the mean and standard deviation are μ = n p and σ = n p q . The mean is 159 and the standard deviation is 8.6447. The random variable for the normal distribution is Y . Y ~ N ( 159 , 8.6447 ) . See The Normal Distribution for help with calculator instructions.

For Problem 1., you include 150 so P ( x 150 ) has normal approximation P ( Y 149.5 ) = 0.8641 .

normalcdf ( 149.5 , 10^99 , 159 , 8.6447 ) = 0.8641 .

For Problem 2., you include 160 so P ( x 160 ) has normal approximation P ( Y 160.5 ) = 0.5689 .

normalcdf ( 0 , 160.5 , 159 , 8.6447 ) = 0.5689

For Problem 3., you exclude 155 so P ( x 155 ) has normal approximation P ( y 155.5 ) = 0.6572 .

normalcdf ( 155.5 , 10^99 , 159 , 8.6447 ) = 0.6572

For Problem 4., you exclude 147 so P ( x 147 ) has normal approximation P ( Y 146.5 ) = 0.0741 .

normalcdf ( 0 , 146.5 , 159 , 8.6447 ) = 0.0741

For Problem 5., P ( x = 175 ) has normal approximation P ( 174.5 < y < 175.5 ) = 0.0083 .

normalcdf ( 174.5 , 175.5 , 159 , 8.6447 ) = 0.0083

Because of calculators and computer software that easily let you calculate binomial probabilities for large values of n , it is not necessary to use the the Normal Approximation to the Binomial provided you have access to these technology tools. Most school labs have Microsoft Excel, an example of computer software that calculates binomial probabilities. Many students have access to the TI-83 or 84 series calculators and they easily calculate probabilities for the binomial. In an Internet browser, if you type in "binomial probability distribution calculation," you can find at least one online calculator for the binomial.

For Example 3 , the probabilities are calculated using the binomial ( n = 300 and p = 0.53 ) below. Compare the binomial and normal distribution answers. See Discrete Random Variables for help with calculator instructions for the binomial.

P ( x 150 ) : 1 - binomialcdf ( 300 , 0.53 , 149 ) = 0.8641

P ( x 160 ) : binomialcdf ( 300 , 0.53 , 160 ) = 0.5684

P ( x 155 ) : 1 - binomialcdf ( 300 , 0.53 , 155 ) = 0.6576

P ( x 147 ) : binomialcdf ( 300 , 0.53 , 146 ) = 0.0742

P ( x = 175 ) : (You use the binomial pdf.) binomialpdf ( 175 , 0.53 , 146 ) = 0.0083

**Contributions made to Example 2 by Roberta Bloom

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
Nasa has use it in the 60's, copper as water purification in the moon travel.
nanocopper obvius
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
analytical skills graphene is prepared to kill any type viruses .
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
1 It is estimated that 30% of all drivers have some kind of medical aid in South Africa. What is the probability that in a sample of 10 drivers: 3.1.1 Exactly 4 will have a medical aid. (8) 3.1.2 At least 2 will have a medical aid. (8) 3.1.3 More than 9 will have a medical aid.
Nerisha Reply
Practice Key Terms 5

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Collaborative statistics. OpenStax CNX. Jul 03, 2012 Download for free at http://cnx.org/content/col10522/1.40
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Collaborative statistics' conversation and receive update notifications?