<< Chapter < Page Chapter >> Page >
(HISTORICAL): Normal Approximation to the Binomial

Historically, being able to compute binomial probabilities was one of the most important applications of the Central Limit Theorem. Binomial probabilities were displayed in a table in a book with a small value for n (say, 20). To calculate the probabilities with large values of n , you had to use the binomial formula which could be very complicated. Using the Normal Approximation to the Binomial simplified the process. To compute the Normal Approximation to the Binomial, take a simple random sample from a population. You must meet the conditionsfor a binomial distribution :

  • there are a certain number n of independent trials
  • the outcomes of any trial are success or failure
  • each trial has the same probability of a success p
Recall that if X is the binomial random variable, then X ~ B ( n , p ) . The shape of the binomial distribution needs to besimilar to the shape of the normal distribution. To ensure this, the quantities n p and n q must both be greater than five ( n p > 5 and n q > 5 ; the approximation is better if they are both greater than or equal to 10). Then the binomial can be approximated by the normal distribution with mean μ = n p and standard deviation σ = n p q . Remember that q = 1 - p . In order to get the best approximation, add 0.5 to x or subtract 0.5 from x ( use x + 0.5 or x - 0.5 ) . The number 0.5 is called the continuity correction factor .

Suppose in a local Kindergarten through 12th grade (K - 12) school district, 53 percent of the population favor a charter school for grades K - 5. A simple random sample of 300 is surveyed.

  1. Find the probability that at least 150 favor a charter school.
  2. Find the probability that at most 160 favor a charter school.
  3. Find the probability that more than 155 favor a charter school.
  4. Find the probability that less than 147 favor a charter school.
  5. Find the probability that exactly 175 favor a charter school.

Let X = the number that favor a charter school for grades K - 5. X ~ B ( n , p ) where n = 300 and p = 0.53 . Since n p > 5 and n q > 5 , use the normal approximation to the binomial. The formulas for the mean and standard deviation are μ = n p and σ = n p q . The mean is 159 and the standard deviation is 8.6447. The random variable for the normal distribution is Y . Y ~ N ( 159 , 8.6447 ) . See The Normal Distribution for help with calculator instructions.

For Problem 1., you include 150 so P ( x 150 ) has normal approximation P ( Y 149.5 ) = 0.8641 .

normalcdf ( 149.5 , 10^99 , 159 , 8.6447 ) = 0.8641 .

For Problem 2., you include 160 so P ( x 160 ) has normal approximation P ( Y 160.5 ) = 0.5689 .

normalcdf ( 0 , 160.5 , 159 , 8.6447 ) = 0.5689

For Problem 3., you exclude 155 so P ( x 155 ) has normal approximation P ( y 155.5 ) = 0.6572 .

normalcdf ( 155.5 , 10^99 , 159 , 8.6447 ) = 0.6572

For Problem 4., you exclude 147 so P ( x 147 ) has normal approximation P ( Y 146.5 ) = 0.0741 .

normalcdf ( 0 , 146.5 , 159 , 8.6447 ) = 0.0741

For Problem 5., P ( x = 175 ) has normal approximation P ( 174.5 < y < 175.5 ) = 0.0083 .

normalcdf ( 174.5 , 175.5 , 159 , 8.6447 ) = 0.0083

Because of calculators and computer software that easily let you calculate binomial probabilities for large values of n , it is not necessary to use the the Normal Approximation to the Binomial provided you have access to these technology tools. Most school labs have Microsoft Excel, an example of computer software that calculates binomial probabilities. Many students have access to the TI-83 or 84 series calculators and they easily calculate probabilities for the binomial. In an Internet browser, if you type in "binomial probability distribution calculation," you can find at least one online calculator for the binomial.

For Example 3 , the probabilities are calculated using the binomial ( n = 300 and p = 0.53 ) below. Compare the binomial and normal distribution answers. See Discrete Random Variables for help with calculator instructions for the binomial.

P ( x 150 ) : 1 - binomialcdf ( 300 , 0.53 , 149 ) = 0.8641

P ( x 160 ) : binomialcdf ( 300 , 0.53 , 160 ) = 0.5684

P ( x 155 ) : 1 - binomialcdf ( 300 , 0.53 , 155 ) = 0.6576

P ( x 147 ) : binomialcdf ( 300 , 0.53 , 146 ) = 0.0742

P ( x = 175 ) : (You use the binomial pdf.) binomialpdf ( 175 , 0.53 , 146 ) = 0.0083

**Contributions made to Example 2 by Roberta Bloom

Questions & Answers

what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
1 It is estimated that 30% of all drivers have some kind of medical aid in South Africa. What is the probability that in a sample of 10 drivers: 3.1.1 Exactly 4 will have a medical aid. (8) 3.1.2 At least 2 will have a medical aid. (8) 3.1.3 More than 9 will have a medical aid.
Nerisha Reply
Practice Key Terms 5

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Collaborative statistics. OpenStax CNX. Jul 03, 2012 Download for free at http://cnx.org/content/col10522/1.40
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Collaborative statistics' conversation and receive update notifications?