# 2.3 Measures of the location of the data

 Page 1 / 15

The common measures of location are quartiles and percentiles

Quartiles are special percentiles. The first quartile, Q 1 , is the same as the 25 th percentile, and the third quartile, Q 3 , is the same as the 75 th percentile. The median, M , is called both the second quartile and the 50 th percentile.

To calculate quartiles and percentiles, the data must be ordered from smallest to largest. Quartiles divide ordered data into quarters. Percentiles divide ordered data into hundredths. To score in the 90 th percentile of an exam does not mean, necessarily, that you received 90% on a test. It means that 90% of test scores are the same or less than your score and 10% of the test scores are the same or greater than your test score.

Percentiles are useful for comparing values. For this reason, universities and colleges use percentiles extensively. One instance in which colleges and universities use percentiles is when SAT results are used to determine a minimum testing score that will be used as an acceptance factor. For example, suppose Duke accepts SAT scores at or above the 75 th percentile. That translates into a score of at least 1220.

Percentiles are mostly used with very large populations. Therefore, if you were to say that 90% of the test scores are less (and not the same or less) than your score, it would be acceptable because removing one particular data value is not significant.

The median is a number that measures the "center" of the data. You can think of the median as the "middle value," but it does not actually have to be one of the observed values. It is a number that separates ordered data into halves. Half the values are the same number or smaller than the median, and half the values are the same number or larger. For example, consider the following data.
1; 11.5; 6; 7.2; 4; 8; 9; 10; 6.8; 8.3; 2; 2; 10; 1
Ordered from smallest to largest:
1; 1; 2; 2; 4; 6; 6.8; 7.2; 8; 8.3; 9; 10; 10; 11.5

Since there are 14 observations, the median is between the seventh value, 6.8, and the eighth value, 7.2. To find the median, add the two values together and divide by two.

$\frac{6.8+7.2}{2}=7$

The median is seven. Half of the values are smaller than seven and half of the values are larger than seven.

Quartiles    are numbers that separate the data into quarters. Quartiles may or may not be part of the data. To find the quartiles, first find the median or second quartile. The first quartile, Q 1 , is the middle value of the lower half of the data, and the third quartile, Q 3 , is the middle value, or median, of the upper half of the data. To get the idea, consider the same data set:
1; 1; 2; 2; 4; 6; 6.8; 7.2; 8; 8.3; 9; 10; 10; 11.5

The median or second quartile is seven. The lower half of the data are 1, 1, 2, 2, 4, 6, 6.8. The middle value of the lower half is two.
1; 1; 2; 2; 4; 6; 6.8

The number two, which is part of the data, is the first quartile . One-fourth of the entire sets of values are the same as or less than two and three-fourths of the values are more than two.

The upper half of the data is 7.2, 8, 8.3, 9, 10, 10, 11.5. The middle value of the upper half is nine.

if the death of of the snow is my yard is normally distributed with the m is equals to 2.5 and what is the probability that a randomly chosen location with have a no that between 2.25 and 2.76
what is the true statement about random variable?
A consumer advocate agency wants to estimate the mean repair cost of a washing machine. the agency randomly selects 40 repair cost and find the mean to be $100.00.The standards deviation is$17.50. Construct a 90% confidence interval for the mean.
pls I need understand this statistics very will is giving me problem
Sixty-four third year high school students were given a standardized reading comprehension test. The mean and standard deviation obtained were 52.27 and 8.24, respectively. Is the mean significantly different from the population mean of 50? Use the 5% level of significance.
No
Ariel
how do I find the modal class
look for the highest occuring number in the class
Kusi
the probability of an event occuring is defined as?
The probability of an even occurring is expected event÷ event being cancelled or event occurring / event not occurring
Gokuna
what is simple bar chat
Simple Bar Chart is a Diagram which shows the data values in form of horizontal bars. It shows categories along y-axis and values along x-axis. The x-axis displays above the bars and y-axis displays on left of the bars with the bars extending to the right side according to their values.
statistics is percentage only
the first word is chance for that we use percentages
it is not at all that statistics is a percentage only
Shambhavi
I need more examples
how to calculate sample needed
mole of sample/mole ratio or Va Vb
Gokuna
how to I solve for arithmetic mean
Yeah. for you to say.
James
yes
niharu
how do I solve for arithmetic mean
niharu
add all the data and divide by the number of data sets. For example, if test scores were 70, 60, 70, 80 the total is 280 and the total data sets referred to as N is 4. Therfore the mean or arthritmatic average is 70. I hope this helps.
Jim
*Tan A - Tan B = sin(A-B)/CosA CosB ... *2sinQ/Cos 3Q = tan 3Q - tan Q
standard error of sample By    By By By  By  