<< Chapter < Page Chapter >> Page >

The smallest data value is 60. Since the data with the most decimal places has one decimal (for instance, 61.5), we want our starting point to have two decimal places. Since the numbers 0.5, 0.05, 0.005, etc. are convenient numbers, use 0.05 and subtract it from 60, the smallest value, for the convenient starting point.

60 – 0.05 = 59.95 which is more precise than, say, 61.5 by one decimal place. The starting point is, then, 59.95.

The largest value is 74, so 74 + 0.05 = 74.05 is the ending value.

Next, calculate the width of each bar or class interval. To calculate this width, subtract the starting point from the ending value and divide by the number of bars (you must choose the number of bars you desire). Suppose you choose eight bars.

74.05 59.95 8 1.76

Note

We will round up to two and make each bar or class interval two units wide. Rounding up to two is one way to prevent a value from falling on a boundary. Rounding to the next number is often necessary even if it goes against the standard rules of rounding. For this example, using 1.76 as the width would also work. A guideline that is followed by some for the width of a bar or class interval is to take the square root of the number of data values and then round to the nearest whole number, if necessary. For example, if there are 150 values of data, take the square root of 150 and round to 12 bars or intervals.

The boundaries are:

  • 59.95
  • 59.95 + 2 = 61.95
  • 61.95 + 2 = 63.95
  • 63.95 + 2 = 65.95
  • 65.95 + 2 = 67.95
  • 67.95 + 2 = 69.95
  • 69.95 + 2 = 71.95
  • 71.95 + 2 = 73.95
  • 73.95 + 2 = 75.95

The heights 60 through 61.5 inches are in the interval 59.95–61.95. The heights that are 63.5 are in the interval 61.95–63.95. The heights that are 64 through 64.5 are in the interval 63.95–65.95. The heights 66 through 67.5 are in the interval 65.95–67.95. The heights 68 through 69.5 are in the interval 67.95–69.95. The heights 70 through 71 are in the interval 69.95–71.95. The heights 72 through 73.5 are in the interval 71.95–73.95. The height 74 is in the interval 73.95–75.95.

The following histogram displays the heights on the x -axis and relative frequency on the y -axis.

Histogram consists of 8 bars with the y-axis in increments of 0.05 from 0-0.4 and the x-axis in intervals of 2 from 59.95-75.95.

Try it

The following data are the shoe sizes of 50 male students. The sizes are continuous data since shoe size is measured. Construct a histogram and calculate the width of each bar or class interval. Suppose you choose six bars.
9; 9; 9.5; 9.5; 10; 10; 10; 10; 10; 10; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5
11; 11; 11; 11; 11; 11; 11; 11; 11; 11; 11; 11; 11; 11.5; 11.5; 11.5; 11.5; 11.5; 11.5; 11.5
12; 12; 12; 12; 12; 12; 12; 12.5; 12.5; 12.5; 12.5; 14

Smallest value: 9

Largest value: 14

Convenient starting value: 9 – 0.05 = 8.95

Convenient ending value: 14 + 0.05 = 14.05

14.05 8.95 6 = 0.85

The calculations suggests using 0.85 as the width of each bar or class interval. You can also use an interval with a width equal to one.

Got questions? Get instant answers now!

The following data are the number of books bought by 50 part-time college students at ABC College. The number of books is discrete data , since books are counted.
1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1
2; 2; 2; 2; 2; 2; 2; 2; 2; 2
3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3
4; 4; 4; 4; 4; 4
5; 5; 5; 5; 5
6; 6

Eleven students buy one book. Ten students buy two books. Sixteen students buy three books. Six students buy four books. Five students buy five books. Two students buy six books.

Because the data are integers, subtract 0.5 from 1, the smallest data value and add 0.5 to 6, the largest data value. Then the starting point is 0.5 and the ending value is 6.5.

Next, calculate the width of each bar or class interval. If the data are discrete and there are not too many different values, a width that places the data values in the middle of the bar or class interval is the most convenient. Since the data consist of the numbers 1, 2, 3, 4, 5, 6, and the starting point is 0.5, a width of one places the 1 in the middle of the interval from 0.5 to 1.5, the 2 in the middle of the interval from 1.5 to 2.5, the 3 in the middle of the interval from 2.5 to 3.5, the 4 in the middle of the interval from _______ to _______, the 5 in the middle of the interval from _______ to _______, and the _______ in the middle of the interval from _______ to _______ .

  • 3.5 to 4.5
  • 4.5 to 5.5
  • 6
  • 5.5 to 6.5
Got questions? Get instant answers now!

Calculate the number of bars as follows:

6.5 0.5 number of bars 1

where 1 is the width of a bar. Therefore, bars = 6.

The following histogram displays the number of books on the x -axis and the frequency on the y -axis.

Histogram consists of 6 bars with the y-axis in increments of 2 from 0-16 and the x-axis in intervals of 1 from 0.5-6.5.
Got questions? Get instant answers now!

Questions & Answers

The controls that are usually used are
Rushikesh Reply
what is math
Rushikesh
the controls that are usually used in quality controls and also controls a process is key tool used in run chat, control chat and design of experiment etc.,
Sravanthi
mean is number that occurs frequently in a giving data
Chinedu Reply
That places the mode and the mean as the same thing. I'd define the mean as the ratio of the total sum of variables to the variable count, and it assigns the variables a similar value across the board.
Samsicker
what is mean
John Reply
what is normal distribution
RAHAT Reply
What is the uses of sample in real life
Waqas Reply
pain scales in hospital
Lisa
change of origin and scale
RAHAT Reply
3. If the grades of 40000 students in a course at the Hashemite University are distributed according to N(60,400) Then the number of students with grades less than 75 =*
Ahmad Reply
If a constant value is added to every observation of data, then arithmetic mean is obtained by
Madiha Reply
sum of AM+Constnt
Fazal
data can be defined as numbers in context. suppose you are given the following set of numbers 18,22,22,20,19,21
Tyasia Reply
what are data
Tyasia Reply
what is mode?
Natasha Reply
what is statistics
Natasha
statistics is a combination of collect data summraize data analyiz data and interprete data
Ali
what is mode
Natasha
what is statistics
Alex Reply
It is the science of analysing numerical data in large quantities, especially for the purpose of inferring proportions in a whole from those in a representative sample.
Bernice
history of statistics
Terseer Reply
statistics was first used by?
Terseer
if a population has a prevalence of Hypertension 5%, what is the probability of 4 people having hypertension from 8 randomly selected individuals?
John Reply
Carpet land sales persons average 8000 per weekend sales Steve qantas the firm's vice president proposes a compensation plan with new selling incentives Steve hopes that the results of a trial selling period will enable him to conclude that the compensation plan increases the average sales per sales
lorenda Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Introductory statistics. OpenStax CNX. May 06, 2016 Download for free at http://legacy.cnx.org/content/col11562/1.18
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introductory statistics' conversation and receive update notifications?

Ask