<< Chapter < Page Chapter >> Page >

In some data sets, there are values (observed data points) called outliers . Outliers are observed data points that are far from the least squares line. They have large "errors", where the "error" or residual is the vertical distance from the line to the point.

Outliers need to be examined closely. Sometimes, for some reason or another, they should not be included in the analysis of the data. It is possible that an outlier is a result of erroneous data. Other times, an outlier may hold valuable information about the population under study and should remain included in the data. The key is to examine carefully what causes a data point to be an outlier.

Besides outliers, a sample may contain one or a few points that are called influential points . Influential points are observed data points that are far from the other observed data points in the horizontal direction. These points may have a big effect on the slope of the regression line. To begin to identify an influential point, you can remove it from the data set and see if the slope of the regression line is changed significantly.

Computers and many calculators can be used to identify outliers from the data. Computer output for regression analysis will often identify both outliers and influential points so that you can examine them.

Identifying outliers

We could guess at outliers by looking at a graph of the scatterplot and best fit-line. However, we would like some guideline as to how far away a point needs to be in order to be considered an outlier. As a rough rule of thumb, we can flag any point that is located further than two standard deviations above or below the best-fit line as an outlier . The standard deviation used is the standard deviation of the residuals or errors.

We can do this visually in the scatter plot by drawing an extra pair of lines that are two standard deviations above and below the best-fit line. Any data points that are outside this extra pair of lines are flagged as potential outliers. Or we can do this numerically by calculating each residual and comparing it to twice the standard deviation. On the TI-83, 83+, or 84+, the graphical approach is easier. The graphical procedure is shown first, followed by the numerical calculations. You would generally need to use only one of these methods.

In the third exam/final exam example , you can determine if there is an outlier or not. If there is an outlier, as an exercise, delete it and fit the remaining data to a new line. For this example, the new line ought to fit the remaining data better. This means the SSE should be smaller and the correlation coefficient ought to be closer to 1 or –1.

Graphical identification of outliers

With the TI-83, 83+, 84+ graphing calculators, it is easy to identify the outliers graphically and visually. If we were to measure the vertical distance from any data point to the corresponding point on the line of best fit and that distance were equal to 2 s or more, then we would consider the data point to be "too far" from the line of best fit. We need to find and graph the lines that are two standard deviations below and above the regression line. Any points that are outside these two lines are outliers. We will call these lines Y2 and Y3:

As we did with the equation of the regression line and the correlation coefficient, we will use technology to calculate this standard deviation for us. Using the LinRegTTest with this data, scroll down through the output screens to find s = 16.412 .

Line Y2 = –173.5 + 4.83 x –2(16.4) and line Y3 = –173.5 + 4.83 x + 2(16.4)

where ŷ = –173.5 + 4.83 x is the line of best fit. Y2 and Y3 have the same slope as the line of best fit.

Graph the scatterplot with the best fit line in equation Y1, then enter the two extra lines as Y2 and Y3 in the "Y="equation editor and press ZOOM 9. You will find that the only data point that is not between lines Y2 and Y3 is the point x = 65, y = 175. On the calculator screen it is just barely outside these lines. The outlier is the student who had a grade of 65 on the third exam and 175 on the final exam; this point is further than two standard deviations away from the best-fit line.

Sometimes a point is so close to the lines used to flag outliers on the graph that it is difficult to tell if the point is between or outside the lines. On a computer, enlarging the graph may help; on a small calculator screen, zooming in may make the graph clearer. Note that when the graph does not give a clear enough picture, you can use the numerical comparisons to identify outliers.

The scatter plot of exam scores with a line of best fit.Two yellow dashed lines run parallel to the line of best fit. The dashed lines run above and below the best fit line at equal distances. One data point falls outside the boundary created by the dashed lines—it is an outlier.
Got questions? Get instant answers now!

Questions & Answers

any one send me the notes of these chpt if possible introduction to statistics measure of centeral tendency or average measure of dispensation moments and skewness presentation of data
Aqsa Reply
what is a regression, and what is it primarily used for
Denisha Reply
assume the sample populations do not have equal standard deviations and use the 0.05 significance level
Nokuthula Reply
what is the solution to this question?
Manbyen Reply
hi please tell
The controls that are usually used are
Rushikesh Reply
what is math
the controls that are usually used in quality controls and also controls a process is key tool used in run chat, control chat and design of experiment etc.,
mean is number that occurs frequently in a giving data
Chinedu Reply
That places the mode and the mean as the same thing. I'd define the mean as the ratio of the total sum of variables to the variable count, and it assigns the variables a similar value across the board.
what is mean
John Reply
what is normal distribution
What is the uses of sample in real life
Waqas Reply
pain scales in hospital
change of origin and scale
3. If the grades of 40000 students in a course at the Hashemite University are distributed according to N(60,400) Then the number of students with grades less than 75 =*
Ahmad Reply
If a constant value is added to every observation of data, then arithmetic mean is obtained by
Madiha Reply
sum of AM+Constnt
data can be defined as numbers in context. suppose you are given the following set of numbers 18,22,22,20,19,21
Tyasia Reply
what are data
Tyasia Reply
what is mode?
Natasha Reply
what is statistics
statistics is a combination of collect data summraize data analyiz data and interprete data
what is mode

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now

Source:  OpenStax, Introductory statistics. OpenStax CNX. May 06, 2016 Download for free at http://legacy.cnx.org/content/col11562/1.18
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introductory statistics' conversation and receive update notifications?