# 10.3 Comparing two independent population proportions  (Page 2/1)

 Page 1 / 1
1. The two independent samples are simple random samples that are independent.
2. The number of successes is at least five and the number of failures is at least five for each of the samples.

Comparing two proportions, like comparing two means, is common. If two estimated proportions are different, it may be due to a difference in the populationsor it may be due to chance. A hypothesis test can help determine if a difference in the estimated proportions $\left({P}_{A}-{P}_{B}\right)$ reflects a difference in the population proportions.

The difference of two proportions follows an approximate normal distribution. Generally, the null hypothesis states that the two proportions are the same. That is, ${H}_{o}:{p}_{A}={p}_{B}$ . To conduct the test, we use a pooled proportion, ${p}_{c}$ .

## The pooled proportion is calculated as follows:

${p}_{c}=\frac{{x}_{A}+{x}_{B}}{{n}_{A}+{n}_{B}}$

## The distribution for the differences is:

${P\text{'}}_{A}-{P\text{'}}_{B}~N\left[0,\sqrt{{p}_{c}·\left(1-{p}_{c}\right)·\left(\frac{1}{{n}_{A}}+\frac{1}{{n}_{B}}\right)}\right]$

## The test statistic (z-score) is:

$z=\frac{\left({p\text{'}}_{A}-{p\text{'}}_{B}\right)-\left({p}_{A}-{p}_{B}\right)}{\sqrt{{p}_{c}·\left(1-{p}_{c}\right)·\left(\frac{1}{{n}_{A}}+\frac{1}{{n}_{B}}\right)}}$

## Two population proportions

Two types of medication for hives are being tested to determine if there is a difference in the proportions of adult patient reactions. Twenty out of a random sample of 200 adults given medication A still had hives 30 minutes after taking the medication. Twelve out of another random sample of 200 adults given medication B still had hives 30 minutes after taking the medication. Test at a 1% level of significance.

## Determining the solution

This is a test of 2 population proportions.

How do you know?

The problem asks for a difference in proportions.

Let $A$ and $B$ be the subscripts for medication A and medication B. Then ${p}_{A}$ and ${p}_{B}$ are the desired population proportions.

## Random variable:

${\mathrm{P\text{'}}}_{A}-{\mathrm{P\text{'}}}_{B}=$ difference in the proportions of adult patients who did not react after 30 minutes to medication A and medication B.

${H}_{o}:{p}_{A}={p}_{B}\phantom{\rule{50pt}{0ex}}{p}_{A}-{p}_{B}=0$

${H}_{a}:{p}_{A}\ne {p}_{B}\phantom{\rule{50pt}{0ex}}{p}_{A}-{p}_{B}\ne 0$

The words "is a difference" tell you the test is two-tailed.

Distribution for the test: Since this is a test of two binomial population proportions, the distribution is normal:

${p}_{c}=\frac{{x}_{A}+{x}_{B}}{{n}_{A}+{n}_{B}}=\frac{20+12}{200+200}=0.08\phantom{\rule{12pt}{0ex}}1-{p}_{c}=0.92$

Therefore, $\phantom{\rule{10pt}{0ex}}{\mathrm{P\text{'}}}_{A}-{\mathrm{P\text{'}}}_{B}~N\left[0,\sqrt{\left(0.08\right)\cdot \left(0.92\right)\cdot \left(\frac{1}{200}+\frac{1}{200}\right)}\right]$

${\mathrm{P\text{'}}}_{A}-{\mathrm{P\text{'}}}_{B}$ follows an approximate normal distribution.

Calculate the p-value using the normal distribution: p-value = 0.1404.

Estimated proportion for group A: $\phantom{\rule{12pt}{0ex}}{\mathrm{p\text{'}}}_{A}=\frac{{x}_{A}}{{n}_{A}}=\frac{20}{200}=0.1$

Estimated proportion for group B: $\phantom{\rule{12pt}{0ex}}{\mathrm{p\text{'}}}_{B}=\frac{{x}_{B}}{{n}_{B}}=\frac{12}{200}=0.06$

## Graph:

${\mathrm{P\text{'}}}_{A}-{\mathrm{P\text{'}}}_{B}=0.1-0.06=0.04$ .

Half the p-value is below -0.04 andhalf is above 0.04.

Compare $\alpha$ and the p-value: $\alpha =0.01$ and the $\text{p-value}=0.1404$ . $\alpha <$ p-value.

Make a decision: Since $\alpha <\text{p-value}$ , do not reject ${H}_{o}$ .

Conclusion: At a 1% level of significance, from the sample data, there is not sufficient evidence to conclude that there is a difference in the proportions of adultpatients who did not react after 30 minutes to medication A and medication B.

TI-83+ and TI-84: Press STAT . Arrow over to TESTS and press 6:2-PropZTest . Arrow down and enter 20 for $\mathrm{x1}$ , 200 for $\mathrm{n1}$ , 12 for $\mathrm{x2}$ , and 200 for $\mathrm{n2}$ . Arrow down to p1 : and arrow to not equal p2 . Press ENTER . Arrow down to Calculate and press ENTER . The p-value is $p=0.1404$ and the test statistic is 1.47. Do the procedure again but instead of Calculate do Draw .

where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
1 It is estimated that 30% of all drivers have some kind of medical aid in South Africa. What is the probability that in a sample of 10 drivers: 3.1.1 Exactly 4 will have a medical aid. (8) 3.1.2 At least 2 will have a medical aid. (8) 3.1.3 More than 9 will have a medical aid.