<< Chapter < Page Chapter >> Page >

An interesting distinction is the one between quality attributes discernable at run-time (performance, security, availability, functionality, usability), those not discernable at run-time (modifiability, portability, reusability, integrability, and testability), and those related to the architecture’s intrinsic qualities (conceptual integrity, correctness, and completeness, buildability).

Quality analysis and evaluation techniques

Various tools and techniques can help ensure a software design’s quality.

  • Software design reviews: informal or semiformal, often group-based, techniques to verify and ensure the quality of design artifacts.
  • Static analysis: formal or semiformal static (non-executable) analysis that can be used to evaluate a design (for example, fault-tree analysis or automated cross-checking).
  • Simulation and prototyping: dynamic techniques to evaluate a design (for example, performance simulation or feasibility prototype.

Measures

Measures can be used to assess or to quantitatively estimate various aspects of a software design’s size, structure, or quality. Most measures that have been proposed generally depend on the approach used for producing the design. These measures are classified in two broad categories:

  • Function-oriented (structured) design measures: the design’s structure, obtained mostly through functional decomposition; generally represented as a structure chart (sometimes called a hierarchical diagram) on which various measures can be computed.
  • Object-oriented design measures: the design’s overall structure is often represented as a class diagram, on which various measures can be computed. Measures on the properties of each class’s internal content can also be computed.

Software design notations

Many notations and languages exist to represent software design artifacts. Some are used mainly to describe a design’s structural organization, others to represent software behavior. Certain notations are used mostly during architectural design and others mainly during detailed design, although some notations can be used in both steps. In addition, some notations are used mostly in the context of specific. Here, they are categorized into notations for describing the structural (static) view vs. the behavioral (dynamic) view.

Structural descriptions (static view)

The following notations, mostly (but not always) graphical, describe and represent the structural aspects of a software design - that is, they describe the major components and how they are interconnected (static view):

  • Architecture description languages (ADLs): textual, often formal, languages used to describe a software architecture in terms of components and connectors.
  • Class and object diagrams: used to represent a set of classes (and objects) and their interrelationships.
  • Component diagrams: used to represent a set of components (“physical and replaceable part[s] of a system that [conform]to and [provide] the realization of a set of interfaces”) and their interrelationships.
  • Class responsibility collaborator cards (CRCs): used to denote the names of components (class), their responsibilities, and their collaborating components’ names.
  • Deployment diagrams: used to represent a set of (physical) nodes and their interrelationships, and, thus, to model the physical aspects of a system.
  • Entity-relationship diagrams (ERDs): used to represent conceptual models of data stored in information systems.
  • Interface description languages (IDLs): programming-like languages used to define the interfaces (names and types of exported operations) of software components.
  • Jackson structure diagrams: used to describe the data structures in terms of sequence, selection, and iteration.
  • Structure charts: used to describe the calling structure of programs (which module calls, and is called by, which other module).

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Software engineering. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10790/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Software engineering' conversation and receive update notifications?

Ask