<< Chapter < Page Chapter >> Page >

The idea behind the waterfall model may be "measure twice; cut once", and those opposed to the waterfall model argue that this idea tends to fall apart when the problem being measured is constantly changing due to requirement modifications and new realizations about the problem itself. The idea behind those who object to the waterfall model may be "time spent in reconnaissance is seldom wasted".

In summary, the criticisms of a non-iterative development approach (such as the waterfall model) are as follows:

  • Many software projects must be open to change due to external factors; the majority of software is written as part of a contract with a client, and clients are notorious for changing their stated requirements. Thus the software project must be adaptable, and spending considerable effort in design and implementation based on the idea that requirements will never change is neither adaptable nor realistic in these cases.
  • Unless those who specify requirements and those who design the software system in question are highly competent, it is difficult to know exactly what is needed in each phase of the software process before some time is spent in the phase "following" it. That is, feedback from following phases is needed to complete "preceding" phases satisfactorily. For example, the design phase may need feedback from the implementation phase to identify problem design areas. The counter-argument for the waterfall model is that experienced designers may have worked on similar systems before, and so may be able to accurately predict problem areas without time spent prototyping and implementing.
  • Constant testing from the design, implementation and verification phases is required to validate the phases preceding them. Constant "prototype design" work is needed to ensure that requirements are non-contradictory and possible to fulfill; constant implementation is needed to find problem areas and inform the design process; constant integration and verification of the implemented code is necessary to ensure that implementation remains on track. The counter-argument for the waterfall model here is that constant implementation and testing to validate the design and requirements is only needed if the introduction of bugs is likely to be a problem. Users of the waterfall model may argue that if designers (et cetera) follow a disciplined process and do not make mistakes that there is no need for constant work in subsequent phases to validate the preceding phases.
  • Frequent incremental builds (following the "release early, release often" philosophy) are often needed to build confidence for a software production team and their client.
  • It is difficult to estimate time and cost for each phase of the development process without doing some "recon" work in that phase, unless those estimating time and cost are highly experienced with the type of software product in question.
  • The waterfall model brings no formal means of exercising management control over a project and planning control and risk management are not covered within the model itself.
  • Only a certain number of team members will be qualified for each phase; thus to have "code monkeys" who are only useful for implementation work do nothing while designers "perfect" the design is a waste of resources. A counter-argument to this is that "multiskilled" software engineers should be hired over "specialized" staff.

Iterative process

Iterative process

Iterative development prescribes the construction of initially small but ever larger portions of a software project to help all those involved to uncover important issues early before problems or faulty assumptions can lead to disaster. Iterative processes are preferred by commercial developers because it allows a potential of reaching the design goals of a customer who does not know how to define what they want.

While Iterative development approaches have their advantages, software architects are still faced with the challenge of creating a reliable foundation upon which to develop. Such a foundation often requires a fair amount of upfront analysis and prototyping to build a development model. The development model often relies upon specific design patterns and entity relationship diagrams (ERD). Without this upfront foundation, Iterative development can create long term challenges that are significant in terms of cost and quality.

Critics of iterative development approaches point out that these processes place what may be an unreasonable expectation upon the recipient of the software: that they must possess the skills and experience of a seasoned software developer. The approach can also be very expensive if iterations are not small enough to mitigate risk; akin to... "If you don't know what kind of house you want, let me build you one and see if you like it. If you don't, we'll tear it all down and start over." By analogy the critic argues that up-front design is as necessary for software development as it is for architecture. The problem with this criticism is that the whole point of iterative programming is that you don't have to build the whole house before you get feedback from the recipient. Indeed, in a sense conventional programming places more of this burden on the recipient, as the requirements and planning phases take place entirely before the development begins, and testing only occurs after development is officially over.

These approaches have been developed along with web based technologies. As such, they are actually more akin to maintenance life cycles given that most of the architecture and capability of the solutions is embodied within the technology selected as the back bone of the application.

References:

http://en.wikipedia.org/wiki/Software_development_process, http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-171Fall2003/CourseHome/,http://www.cs.cornell.edu/courses/cs501/2008sp/, http://www.comp.lancs.ac.uk/computing/resources/IanS/SE7/,http://www.ee.unb.ca/kengleha/courses/CMPE3213/IntroToSoftwareEng.htm, http://www.d.umn.edu/~gshute/softeng/process.html,http://www.sei.cmu.edu/community/easel/demos/SWprocess.html, etc...

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Software engineering. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10790/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Software engineering' conversation and receive update notifications?

Ask