<< Chapter < Page Chapter >> Page >

Behavioral descriptions (dynamic view)

The following notations and languages, some graphical and some textual, are used to describe the dynamic behavior of software and components. Many of these notations are useful mostly, but not exclusively, during detailed design.

  • Activity diagrams: used to show the control flow from activity (“ongoing non-atomic execution within a state machine”) to activity.
  • Collaboration diagrams: used to show the interactions that occur among a group of objects, where the emphasis is on the objects, their links, and the messages they exchange on these links.
  • Data flow diagrams (DFDs): used to show data flow among a set of processes.
  • Decision tables and diagrams: used to represent complex combinations of conditions and actions.
  • Flowcharts and structured flowcharts: used to represent the flow of control and the associated actions to be performed.
  • Sequence diagrams: used to show the interactions among a group of objects, with emphasis on the time-ordering of messages.
  • State transition and state-chart diagrams: used to show the control flow from state to state in a state machine.
  • Formal specification languages: textual languages that use basic notions from mathematics (for example, logic, set, sequence) to rigorously and abstractly define software component interfaces and behavior, often in terms of pre- and post-conditions.
  • Pseudocode and program design languages (PDLs): structured-programming-like languages used to describe, generally at the detailed design stage, the behavior of a procedure or method.

Software design strategies and methods

There exist various general strategies to help guide the design process. In contrast with general strategies, methods are more specific in that they generally suggest and provide a set of notations to be used with the method, a description of the process to be used when following the method and a set of guidelines in using the method. Such methods are useful as a means of transferring knowledge and as a common framework for teams of software engineers.

General strategies

Some often-cited examples of general strategies useful in the design process are divide-and-conquer and stepwise refinement, top-down vs. bottom-up strategies, data abstraction and information hiding, use of heuristics, use of patterns and pattern languages, use of an iterative and incremental approach.

Function-oriented (structured) design

This is one of the classical methods of software design, where decomposition centers on identifying the major software functions and then elaborating and refining them in a top-down manner. Structured design is generally used after structured analysis, thus producing, among other things, data flow diagrams and associated process descriptions. Researchers have proposed various strategies (for example, transformation analysis, transaction analysis) and heuristics (for example, fan-in/fan-out, scope of effect vs. scope of control) to transform a DFD into a software architecture generally represented as a structure chart.

Object-oriented design

Numerous software design methods based on objects have been proposed. The field has evolved from the early object-based design of the mid-1980s (noun = object; verb = method; adjective = attribute) through OO design, where inheritance and polymorphism play a key role, to the field of component-based design, where meta-information can be defined and accessed (through reflection, for example). Although OO design’s roots stem from the concept of data abstraction, responsibility-driven design has also been proposed as an alternative approach to OO design.

Data-structure-centered design

Data-structure-centered design (for example, Jackson, Warnier-Orr) starts from the data structures a program manipulates rather than from the function it performs. The software engineer first describes the input and output data structures (using Jackson’s structure diagrams, for instance) and then develops the program’s control structure based on these data structure diagrams. Various heuristics have been proposed to deal with special cases—for example, when there is a mismatch between the input and output structures.

Component-based design (cbd)

A software component is an independent unit, having well-defined interfaces and dependencies that can be composed and deployed independently. Component-based design addresses issues related to providing, developing, and integrating such components in order to improve reuse.

Other methods

Other interesting but less mainstream approaches also exist: formal and rigorous methods and transformational methods.

References:

http://en.wikipedia.org/wiki/Software_design, http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-171Fall2003/CourseHome/,http://www.cs.cornell.edu/courses/cs501/2008sp/, http://www.sei.cmu.edu/,http://www.comp.lancs.ac.uk/computing/resources/IanS/SE7/,http://www.ee.unb.ca/kengleha/courses/CMPE3213/IntroToSoftwareEng.htm, http://www.developerdotstar.com/mag/articles/reeves_design.html,http://trace.wisc.edu/docs/software_guidelines/software.pcs/spec_gl.htm, etc...

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Software engineering. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10790/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Software engineering' conversation and receive update notifications?

Ask