<< Chapter < Page Chapter >> Page >

Given a polynomial function, sketch the graph.

  1. Find the intercepts.
  2. Check for symmetry. If the function is an even function, its graph is symmetrical about the y - axis, that is, f ( x ) = f ( x ) . If a function is an odd function, its graph is symmetrical about the origin, that is, f ( x ) = f ( x ) .
  3. Use the multiplicities of the zeros to determine the behavior of the polynomial at the x - intercepts.
  4. Determine the end behavior by examining the leading term.
  5. Use the end behavior and the behavior at the intercepts to sketch a graph.
  6. Ensure that the number of turning points does not exceed one less than the degree of the polynomial.
  7. Optionally, use technology to check the graph.

Sketching the graph of a polynomial function

Sketch a graph of f ( x ) = −2 ( x + 3 ) 2 ( x 5 ) .

This graph has two x - intercepts. At x = −3 , the factor is squared, indicating a multiplicity of 2. The graph will bounce at this x - intercept. At x = 5 , the function has a multiplicity of one, indicating the graph will cross through the axis at this intercept.

The y -intercept is found by evaluating f ( 0 ) .

f ( 0 ) = 2 ( 0 + 3 ) 2 ( 0 5 )         = 2 9 ( 5 )         = 90

The y - intercept is ( 0 , 90 ) .

Additionally, we can see the leading term, if this polynomial were multiplied out, would be 2 x 3 , so the end behavior is that of a vertically reflected cubic, with the outputs decreasing as the inputs approach infinity, and the outputs increasing as the inputs approach negative infinity. See [link] .

Showing the distribution for the leading term.

To sketch this, we consider that:

  • As x the function f ( x ) , so we know the graph starts in the second quadrant and is decreasing toward the x - axis.
  • Since f ( x ) = −2 ( x + 3 ) 2 ( x 5 ) is not equal to f ( x ) , the graph does not display symmetry.
  • At ( 3 , 0 ) , the graph bounces off of the x - axis, so the function must start increasing.

    At ( 0 , 90 ) , the graph crosses the y - axis at the y - intercept. See [link] .

Graph of the end behavior and intercepts, (-3, 0) and (0, 90), for the function f(x)=-2(x+3)^2(x-5).

Somewhere after this point, the graph must turn back down or start decreasing toward the horizontal axis because the graph passes through the next intercept at ( 5 , 0 ) . See [link] .

Graph of the end behavior and intercepts, (-3, 0), (0, 90) and (5, 0), for the function f(x)=-2(x+3)^2(x-5).

As x the function f ( x ) −∞ , so we know the graph continues to decrease, and we can stop drawing the graph in the fourth quadrant.

Using technology, we can create the graph for the polynomial function, shown in [link] , and verify that the resulting graph looks like our sketch in [link] .

Graph of f(x)=-2(x+3)^2(x-5).
The complete graph of the polynomial function f ( x ) = 2 ( x + 3 ) 2 ( x 5 )
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Sketch a graph of f ( x ) = 1 4 x ( x 1 ) 4 ( x + 3 ) 3 .

Graph of f(x)=(1/4)x(x-1)^4(x+3)^3.
Got questions? Get instant answers now!

Using the intermediate value theorem

In some situations, we may know two points on a graph but not the zeros. If those two points are on opposite sides of the x -axis, we can confirm that there is a zero between them. Consider a polynomial function f whose graph is smooth and continuous. The Intermediate Value Theorem states that for two numbers a and b in the domain of f , if a < b and f ( a ) f ( b ) , then the function f takes on every value between f ( a ) and f ( b ) . We can apply this theorem to a special case that is useful in graphing polynomial functions. If a point on the graph of a continuous function f at x = a lies above the x - axis and another point at x = b lies below the x - axis, there must exist a third point between x = a and x = b where the graph crosses the x - axis. Call this point ( c ,   f ( c ) ) . This means that we are assured there is a solution c where f ( c ) = 0.

Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask