<< Chapter < Page Chapter >> Page >

Dividing complex numbers

Divide ( 2 + 5 i ) by ( 4 i ) .

We begin by writing the problem as a fraction.

( 2 + 5 i ) ( 4 i )

Then we multiply the numerator and denominator by the complex conjugate of the denominator.

( 2 + 5 i ) ( 4 i ) ( 4 + i ) ( 4 + i )

To multiply two complex numbers, we expand the product as we would with polynomials (the process commonly called FOIL).

( 2 + 5 i ) ( 4 i ) ( 4 + i ) ( 4 + i ) = 8 + 2 i + 20 i + 5 i 2 16 + 4 i 4 i i 2                             = 8 + 2 i + 20 i + 5 ( 1 ) 16 + 4 i 4 i ( 1 ) Because    i 2 = 1                             = 3 + 22 i 17                             = 3 17 + 22 17 i Separate real and imaginary parts .

Note that this expresses the quotient in standard form.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Substituting a complex number into a polynomial function

Let f ( x ) = x 2 5 x + 2. Evaluate f ( 3 + i ) .

Substitute x = 3 + i into the function f ( x ) = x 2 5 x + 2 and simplify.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Let f ( x ) = 2 x 2 3 x . Evaluate f ( 8 i ) .

102 29 i

Got questions? Get instant answers now!

Substituting an imaginary number in a rational function

Let f ( x ) = 2 + x x + 3 . Evaluate f ( 10 i ) .

Substitute x = 10 i and simplify.

2 + 10 i 10 i + 3 Substitute  10 i  for  x . 2 + 10 i 3 + 10 i Rewrite the denominator in standard form . 2 + 10 i 3 + 10 i 3 10 i 3 10 i Prepare to multiply the numerator and denominator by the complex conjugate of the denominator . 6 20 i + 30 i 100 i 2 9 30 i + 30 i 100 i 2 Multiply using the distributive property or the FOIL method . 6 20 i + 30 i 100 ( 1 ) 9 30 i + 30 i 100 ( 1 ) Substitute –1 for   i 2 . 106 + 10 i 109 Simplify . 106 109 + 10 109 i Separate the real and imaginary parts .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Let f ( x ) = x + 1 x 4 . Evaluate f ( i ) .

3 17 + 5 i 17

Got questions? Get instant answers now!

Simplifying powers of i

The powers of i are cyclic. Let’s look at what happens when we raise i to increasing powers.

i 1 = i i 2 = 1 i 3 = i 2 i = 1 i = i i 4 = i 3 i = i i = i 2 = ( 1 ) = 1 i 5 = i 4 i = 1 i = i

We can see that when we get to the fifth power of i , it is equal to the first power. As we continue to multiply i by itself for increasing powers, we will see a cycle of 4. Let’s examine the next 4 powers of i .

i 6 = i 5 i = i i = i 2 = 1 i 7 = i 6 i = i 2 i = i 3 = i i 8 = i 7 i = i 3 i = i 4 = 1 i 9 = i 8 i = i 4 i = i 5 = i

Simplifying powers of i

Evaluate i 35 .

Since i 4 = 1 , we can simplify the problem by factoring out as many factors of i 4 as possible. To do so, first determine how many times 4 goes into 35: 35 = 4 8 + 3.

i 35 = i 4 8 + 3 = i 4 8 i 3 = ( i 4 ) 8 i 3 = 1 8 i 3 = i 3 = i
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Can we write i 35 in other helpful ways?

As we saw in [link] , we reduced i 35 to i 3 by dividing the exponent by 4 and using the remainder to find the simplified form. But perhaps another factorization of i 35 may be more useful. [link] shows some other possible factorizations.

Factorization of i 35 i 34 i i 33 i 2 i 31 i 4 i 19 i 16
Reduced form ( i 2 ) 17 i i 33 ( 1 ) i 31 1 i 19 ( i 4 ) 4
Simplified form ( 1 ) 17 i i 33 i 31 i 19

Each of these will eventually result in the answer we obtained above but may require several more steps than our earlier method.

Access these online resources for additional instruction and practice with complex numbers.

Key concepts

  • The square root of any negative number can be written as a multiple of i . See [link] .
  • To plot a complex number, we use two number lines, crossed to form the complex plane. The horizontal axis is the real axis, and the vertical axis is the imaginary axis. See [link] .
  • Complex numbers can be added and subtracted by combining the real parts and combining the imaginary parts. See [link] .
  • Complex numbers can be multiplied and divided.
  • To multiply complex numbers, distribute just as with polynomials. See [link] , [link] , and [link] .
  • To divide complex numbers, multiply both the numerator and denominator by the complex conjugate of the denominator to eliminate the complex number from the denominator. See [link] , [link] , and [link] .
  • The powers of i are cyclic, repeating every fourth one. See [link] .

Verbal

Explain how to add complex numbers.

Add the real parts together and the imaginary parts together.

Got questions? Get instant answers now!

What is the basic principle in multiplication of complex numbers?

Got questions? Get instant answers now!

Give an example to show the product of two imaginary numbers is not always imaginary.

i times i equals –1, which is not imaginary. (answers vary)

Got questions? Get instant answers now!

What is a characteristic of the plot of a real number in the complex plane?

Got questions? Get instant answers now!

Algebraic

For the following exercises, evaluate the algebraic expressions.

If  f ( x ) = x 2 + x 4 , evaluate f ( 2 i ) .

8 + 2 i

Got questions? Get instant answers now!

If  f ( x ) = x 3 2 , evaluate f ( i ) .

Got questions? Get instant answers now!

If  f ( x ) = x 2 + 3 x + 5 , evaluate f ( 2 + i ) .

14 + 7 i

Got questions? Get instant answers now!

If  f ( x ) = 2 x 2 + x 3 , evaluate f ( 2 3 i ) .

Got questions? Get instant answers now!

If  f ( x ) = x + 1 2 x , evaluate f ( 5 i ) .

23 29 + 15 29 i

Got questions? Get instant answers now!

If  f ( x ) = 1 + 2 x x + 3 , evaluate f ( 4 i ) .

Got questions? Get instant answers now!

Graphical

For the following exercises, determine the number of real and nonreal solutions for each quadratic function shown.

For the following exercises, plot the complex numbers on the complex plane.

Numeric

For the following exercises, perform the indicated operation and express the result as a simplified complex number.

( 3 + 2 i ) + ( 5 3 i )

8 i

Got questions? Get instant answers now!

( 2 4 i ) + ( 1 + 6 i )

Got questions? Get instant answers now!

( 5 + 3 i ) ( 6 i )

11 + 4 i

Got questions? Get instant answers now!

( 2 3 i ) ( 3 + 2 i )

Got questions? Get instant answers now!

( 4 + 4 i ) ( 6 + 9 i )

2 5 i

Got questions? Get instant answers now!

( 5 2 i ) ( 3 i )

6 + 15 i

Got questions? Get instant answers now!

( 2 + 4 i ) ( 8 )

16 + 32 i

Got questions? Get instant answers now!

( 1 + 2 i ) ( 2 + 3 i )

4 7 i

Got questions? Get instant answers now!

( 4 2 i ) ( 4 + 2 i )

Got questions? Get instant answers now!

( 3 + 4 i ) ( 3 4 i )

25

Got questions? Get instant answers now!

3 + 4 i 2 i

2 5 + 11 5 i

Got questions? Get instant answers now!

Technology

For the following exercises, use a calculator to help answer the questions.

Evaluate ( 1 + i ) k for k = 4, 8, and 12 . Predict the value if k = 16.

Got questions? Get instant answers now!

Evaluate ( 1 i ) k for k = 2, 6, and 10 . Predict the value if k = 14.

128i

Got questions? Get instant answers now!

Evaluate ( 1 + i ) k ( 1 i ) k for k = 4, 8, and 12 . Predict the value for k = 16.

Got questions? Get instant answers now!

Show that a solution of x 6 + 1 = 0 is 3 2 + 1 2 i .

( 3 2 + 1 2 i ) 6 = 1

Got questions? Get instant answers now!

Show that a solution of x 8 1 = 0 is 2 2 + 2 2 i .

Got questions? Get instant answers now!

Extensions

For the following exercises, evaluate the expressions, writing the result as a simplified complex number.

( 2 + i ) ( 4 2 i ) ( 1 + i )

5 – 5i

Got questions? Get instant answers now!

( 1 + 3 i ) ( 2 4 i ) ( 1 + 2 i )

Got questions? Get instant answers now!

( 3 + i ) 2 ( 1 + 2 i ) 2

2 i

Got questions? Get instant answers now!

3 + 2 i 2 + i + ( 4 + 3 i )

Got questions? Get instant answers now!

4 + i i + 3 4 i 1 i

9 2 9 2 i

Got questions? Get instant answers now!

3 + 2 i 1 + 2 i 2 3 i 3 + i

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask