<< Chapter < Page Chapter >> Page >

Find the inverse of the function f ( x ) = x 2 + 1 , on the domain x 0.

f 1 ( x ) = x 1

Got questions? Get instant answers now!

Solving applications of radical functions

Notice that the functions from previous examples were all polynomials, and their inverses were radical functions. If we want to find the inverse of a radical function , we will need to restrict the domain of the answer because the range of the original function is limited.

Given a radical function, find the inverse.

  1. Determine the range of the original function.
  2. Replace f ( x ) with y , then solve for x .
  3. If necessary, restrict the domain of the inverse function to the range of the original function.

Finding the inverse of a radical function

Restrict the domain and then find the inverse of the function f ( x ) = x 4 .

Note that the original function has range f ( x ) 0. Replace f ( x ) with y , then solve for x .

y = x 4 Replace f ( x ) with y . x = y 4 Interchange x and y . x = y 4 Square each side . x 2 = y 4 Add 4 . x 2 + 4 = y Rename the function f 1 ( x ) . f 1 ( x ) = x 2 + 4

Recall that the domain of this function must be limited to the range of the original function.

f 1 ( x ) = x 2 + 4 , x 0
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Restrict the domain and then find the inverse of the function f ( x ) = 2 x + 3 .

f 1 ( x ) = x 2 3 2 , x 0

Got questions? Get instant answers now!

Solving applications of radical functions

Radical functions are common in physical models, as we saw in the section opener. We now have enough tools to be able to solve the problem posed at the start of the section.

Solving an application with a cubic function

A mound of gravel is in the shape of a cone with the height equal to twice the radius. The volume of the cone in terms of the radius is given by

V = 2 3 π r 3

Find the inverse of the function V = 2 3 π r 3 that determines the volume V of a cone and is a function of the radius r . Then use the inverse function to calculate the radius of such a mound of gravel measuring 100 cubic feet. Use π = 3.14.

Start with the given function for V . Notice that the meaningful domain for the function is r 0 since negative radii would not make sense in this context. Also note the range of the function (hence, the domain of the inverse function) is V 0. Solve for r in terms of V , using the method outlined previously.

V = 2 3 π r 3 r 3 = 3 V 2 π Solve for  r 3 . r = 3 V 2 π 3 Solve for  r .

This is the result stated in the section opener. Now evaluate this for V = 100 and π = 3.14.

r = 3 V 2 π 3       = 3 100 2 3.14 3 47.7707 3    3.63

Therefore, the radius is about 3.63 ft.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Determining the domain of a radical function composed with other functions

When radical functions are composed with other functions, determining domain can become more complicated.

Finding the domain of a radical function composed with a rational function

Find the domain of the function f ( x ) = ( x + 2 ) ( x 3 ) ( x 1 ) .

Because a square root is only defined when the quantity under the radical is non-negative, we need to determine where ( x + 2 ) ( x 3 ) ( x 1 ) 0. The output of a rational function can change signs (change from positive to negative or vice versa) at x -intercepts and at vertical asymptotes. For this equation, the graph could change signs at x = –2, 1, and 3.

To determine the intervals on which the rational expression is positive, we could test some values in the expression or sketch a graph. While both approaches work equally well, for this example we will use a graph as shown in [link] .

Graph of a radical function that shows where the outputs are nonnegative.

This function has two x -intercepts, both of which exhibit linear behavior near the x -intercepts. There is one vertical asymptote, corresponding to a linear factor; this behavior is similar to the basic reciprocal toolkit function, and there is no horizontal asymptote because the degree of the numerator is larger than the degree of the denominator. There is a y -intercept at ( 0 ,   6 ) .

From the y -intercept and x -intercept at x = 2 , we can sketch the left side of the graph. From the behavior at the asymptote, we can sketch the right side of the graph.

From the graph, we can now tell on which intervals the outputs will be non-negative, so that we can be sure that the original function f ( x ) will be defined. f ( x ) has domain 2 x < 1 or x 3 , or in interval notation, [ 2 , 1 ) [ 3 , ) .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask