Solving application problems with arithmetic sequences
In many application problems, it often makes sense to use an initial term of
instead of
In these problems, we alter the explicit formula slightly to account for the difference in initial terms. We use the following formula:
Solving application problems with arithmetic sequences
A five-year old child receives an allowance of $1 each week. His parents promise him an annual increase of $2 per week.
Write a formula for the child’s weekly allowance in a given year.
What will the child’s allowance be when he is 16 years old?
The situation can be modeled by an arithmetic sequence with an initial term of 1 and a common difference of 2.
Let
be the amount of the allowance and
be the number of years after age 5. Using the altered explicit formula for an arithmetic sequence we get:
We can find the number of years since age 5 by subtracting.
We are looking for the child’s allowance after 11 years. Substitute 11 into the formula to find the child’s allowance at age 16.
The child’s allowance at age 16 will be $23 per week.
A woman decides to go for a 10-minute run every day this week and plans to increase the time of her daily run by 4 minutes each week. Write a formula for the time of her run after n weeks. How long will her daily run be 8 weeks from today?
recursive formula for nth term of an arithmetic sequence
explicit formula for nth term of an arithmetic sequence
Key concepts
An arithmetic sequence is a sequence where the difference between any two consecutive terms is a constant.
The constant between two consecutive terms is called the common difference.
The common difference is the number added to any one term of an arithmetic sequence that generates the subsequent term. See
[link] .
The terms of an arithmetic sequence can be found by beginning with the initial term and adding the common difference repeatedly. See
[link] and
[link] .
A recursive formula for an arithmetic sequence with common difference
is given by
See
[link] .
As with any recursive formula, the initial term of the sequence must be given.
An explicit formula for an arithmetic sequence with common difference
is given by
See
[link] .
An explicit formula can be used to find the number of terms in a sequence. See
[link] .
In application problems, we sometimes alter the explicit formula slightly to
See
[link] .
Section exercises
Verbal
What is an arithmetic sequence?
A sequence where each successive term of the sequence increases (or decreases) by a constant value.
A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?