<< Chapter < Page Chapter >> Page >

Finding zeros and maximum values for a polar equation

Using the equation in [link] , find the zeros and maximum | r | and, if necessary, the polar axis intercepts of r = 2 sin θ .

To find the zeros, set r equal to zero and solve for θ .

2 sin θ = 0 sin θ = 0 θ = sin 1 0 θ = n π where  n  is an integer

Substitute any one of the θ values into the equation. We will use 0.

r = 2 sin ( 0 ) r = 0

The points ( 0 , 0 ) and ( 0 , ± n π ) are the zeros of the equation. They all coincide, so only one point is visible on the graph. This point is also the only polar axis intercept.

To find the maximum value of the equation, look at the maximum value of the trigonometric function sin θ , which occurs when θ = π 2 ± 2 k π resulting in sin ( π 2 ) = 1. Substitute π 2 for θ.

r = 2 sin ( π 2 ) r = 2 ( 1 ) r = 2
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Without converting to Cartesian coordinates, test the given equation for symmetry and find the zeros and maximum values of | r | : r = 3 cos θ .

Tests will reveal symmetry about the polar axis. The zero is ( 0 , π 2 ) , and the maximum value is ( 3 , 0 ) .

Got questions? Get instant answers now!

Investigating circles

Now we have seen the equation of a circle in the polar coordinate system. In the last two examples, the same equation was used to illustrate the properties of symmetry and demonstrate how to find the zeros, maximum values, and plotted points that produced the graphs. However, the circle is only one of many shapes in the set of polar curves.

There are five classic polar curves : cardioids , limaҫons, lemniscates, rose curves , and Archimedes’ spirals . We will briefly touch on the polar formulas for the circle before moving on to the classic curves and their variations.

Formulas for the equation of a circle

Some of the formulas that produce the graph of a circle in polar coordinates are given by r = a cos θ and r = a sin θ , where a is the diameter of the circle or the distance from the pole to the farthest point on the circumference. The radius is | a | 2 , or one-half the diameter. For r = a cos θ ,  the center is ( a 2 , 0 ) . For r = a sin θ , the center is ( a 2 , π ) . [link] shows the graphs of these four circles.

Four graphs side by side. All have radius absolute value of a / 2. First is r=acos(theta), a>0. The center is at (a/2,0). Second is r=acos(theta), a<0. The center is at (a/2,0).  Third is r=asin(theta), a>0. The center is at (a/2, pi). Fourth is r=asin(theta), a<0. The center is at (a/2, pi).

Sketching the graph of a polar equation for a circle

Sketch the graph of r = 4 cos θ .

First, testing the equation for symmetry, we find that the graph is symmetric about the polar axis. Next, we find the zeros    and maximum | r | for r = 4 cos θ . First, set r = 0 , and solve for θ . Thus, a zero occurs at θ = π 2 ± k π . A key point to plot is ( 0 , π 2 ) .

To find the maximum value of r , note that the maximum value of the cosine function is 1 when θ = 0 ± 2 k π . Substitute θ = 0 into the equation:

r = 4 cos θ r = 4 cos ( 0 ) r = 4 ( 1 ) = 4

The maximum value of the equation is 4. A key point to plot is ( 4 , 0 ) .

As r = 4 cos θ is symmetric with respect to the polar axis, we only need to calculate r -values for θ over the interval [ 0 , π ] . Points in the upper quadrant can then be reflected to the lower quadrant. Make a table of values similar to [link] . The graph is shown in [link] .

θ 0 π 6 π 4 π 3 π 2 2 π 3 3 π 4 5 π 6 π
r 4 3.46 2.83 2 0 −2 −2.83 −3.46 4
Graph of 4=4cos(theta) in polar coordinates. Points (0, pi/2), (-2, 2pi/3), (4,0), and (2, pi/3) are marked on the circumference.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Investigating cardioids

While translating from polar coordinates to Cartesian coordinates may seem simpler in some instances, graphing the classic curves is actually less complicated in the polar system. The next curve is called a cardioid, as it resembles a heart. This shape is often included with the family of curves called limaçons, but here we will discuss the cardioid on its own.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask