<< Chapter < Page Chapter >> Page >

So how can we decide if a function is continuous at a particular number? We can check three different conditions. Let’s use the function y = f ( x ) represented in [link] as an example.

Graph of an increasing function with a discontinuity at (a, f(a)).

Condition 1 According to Condition 1, the function f ( a ) defined at x = a must exist. In other words, there is a y -coordinate at x = a as in [link] .

Graph of an increasing function with a discontinuity at (a, 2). The point (a, f(a)) is directly below the hole.

Condition 2 According to Condition 2, at x = a the limit, written lim x a f ( x ) , must exist. This means that at x = a the left-hand limit must equal the right-hand limit. Notice as the graph of f in [link] approaches x = a from the left and right, the same y -coordinate is approached. Therefore, Condition 2 is satisfied. However, there could still be a hole in the graph at x = a .

Condition 3 According to Condition 3, the corresponding y coordinate at x = a fills in the hole in the graph of f . This is written lim x a f ( x ) = f ( a ) .

Satisfying all three conditions means that the function is continuous. All three conditions are satisfied for the function represented in [link] so the function is continuous as x = a .

Graph of an increasing function with filled-in discontinuity at (a, f(a)).
All three conditions are satisfied. The function is continuous at x = a .

[link] through [link] provide several examples of graphs of functions that are not continuous at x = a and the condition or conditions that fail.

Graph of an increasing function with a discontinuity at (a, f(a)).
Condition 2 is satisfied. Conditions 1 and 3 both fail.
Graph of an increasing function with a discontinuity at (a, 2). The point (a, f(a)) is directly below the hole.
Conditions 1 and 2 are both satisfied. Condition 3 fails.
Graph of a piecewise function with an increasing segment from negative infinity to (a, f(a)), which is closed, and another increasing segment from (a, f(a)-1), which is open, to positive infinity.
Condition 1 is satisfied. Conditions 2 and 3 fail.
Graph of a piecewise function with an increasing segment from negative infinity to (a, f(a)) and another increasing segment from (a, f(a) - 1) to positive infinity. This graph does not include the point (a, f(a)).
Conditions 1, 2, and 3 all fail.

Definition of continuity

A function f ( x ) is continuous at x = a provided all three of the following conditions hold true:

  • Condition 1: f ( a ) exists.
  • Condition 2: lim x a f ( x ) exists at x = a .
  • Condition 3: lim x a f ( x ) = f ( a ) .

If a function f ( x ) is not continuous at x = a , the function is discontinuous at x = a .

Identifying a jump discontinuity

Discontinuity can occur in different ways. We saw in the previous section that a function could have a left-hand limit    and a right-hand limit    even if they are not equal. If the left- and right-hand limits exist but are different, the graph “jumps” at x = a . The function is said to have a jump discontinuity.

As an example, look at the graph of the function y = f ( x ) in [link] . Notice as x approaches a how the output approaches different values from the left and from the right.

Graph of a piecewise function with an increasing segment from negative infinity to (a, f(a)), which is closed, and another increasing segment from (a, f(a)-1), which is open, to positive infinity.
Graph of a function with a jump discontinuity.

Jump discontinuity

A function f ( x ) has a jump discontinuity    at x = a if the left- and right-hand limits both exist but are not equal: lim x a f ( x ) lim x a + f ( x ) .

Identifying removable discontinuity

Some functions have a discontinuity, but it is possible to redefine the function at that point to make it continuous. This type of function is said to have a removable discontinuity. Let’s look at the function y = f ( x ) represented by the graph in [link] . The function has a limit. However, there is a hole at x = a . The hole can be filled by extending the domain to include the input x = a and defining the corresponding output of the function at that value as the limit of the function at x = a .

Graph of an increasing function with a removable discontinuity at (a, f(a)).
Graph of function f with a removable discontinuity at x = a .

Removable discontinuity

A function f ( x ) has a removable discontinuity    at x = a if the limit, lim x a f ( x ) , exists, but either

  1. f ( a ) does not exist or
  2. f ( a ) , the value of the function at x = a does not equal the limit, f ( a ) lim x a f ( x ) .

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask