<< Chapter < Page Chapter >> Page >

So how can we decide if a function is continuous at a particular number? We can check three different conditions. Let’s use the function y = f ( x ) represented in [link] as an example.

Graph of an increasing function with a discontinuity at (a, f(a)).

Condition 1 According to Condition 1, the function f ( a ) defined at x = a must exist. In other words, there is a y -coordinate at x = a as in [link] .

Graph of an increasing function with a discontinuity at (a, 2). The point (a, f(a)) is directly below the hole.

Condition 2 According to Condition 2, at x = a the limit, written lim x a f ( x ) , must exist. This means that at x = a the left-hand limit must equal the right-hand limit. Notice as the graph of f in [link] approaches x = a from the left and right, the same y -coordinate is approached. Therefore, Condition 2 is satisfied. However, there could still be a hole in the graph at x = a .

Condition 3 According to Condition 3, the corresponding y coordinate at x = a fills in the hole in the graph of f . This is written lim x a f ( x ) = f ( a ) .

Satisfying all three conditions means that the function is continuous. All three conditions are satisfied for the function represented in [link] so the function is continuous as x = a .

Graph of an increasing function with filled-in discontinuity at (a, f(a)).
All three conditions are satisfied. The function is continuous at x = a .

[link] through [link] provide several examples of graphs of functions that are not continuous at x = a and the condition or conditions that fail.

Graph of an increasing function with a discontinuity at (a, f(a)).
Condition 2 is satisfied. Conditions 1 and 3 both fail.
Graph of an increasing function with a discontinuity at (a, 2). The point (a, f(a)) is directly below the hole.
Conditions 1 and 2 are both satisfied. Condition 3 fails.
Graph of a piecewise function with an increasing segment from negative infinity to (a, f(a)), which is closed, and another increasing segment from (a, f(a)-1), which is open, to positive infinity.
Condition 1 is satisfied. Conditions 2 and 3 fail.
Graph of a piecewise function with an increasing segment from negative infinity to (a, f(a)) and another increasing segment from (a, f(a) - 1) to positive infinity. This graph does not include the point (a, f(a)).
Conditions 1, 2, and 3 all fail.

Definition of continuity

A function f ( x ) is continuous at x = a provided all three of the following conditions hold true:

  • Condition 1: f ( a ) exists.
  • Condition 2: lim x a f ( x ) exists at x = a .
  • Condition 3: lim x a f ( x ) = f ( a ) .

If a function f ( x ) is not continuous at x = a , the function is discontinuous at x = a .

Identifying a jump discontinuity

Discontinuity can occur in different ways. We saw in the previous section that a function could have a left-hand limit    and a right-hand limit    even if they are not equal. If the left- and right-hand limits exist but are different, the graph “jumps” at x = a . The function is said to have a jump discontinuity.

As an example, look at the graph of the function y = f ( x ) in [link] . Notice as x approaches a how the output approaches different values from the left and from the right.

Graph of a piecewise function with an increasing segment from negative infinity to (a, f(a)), which is closed, and another increasing segment from (a, f(a)-1), which is open, to positive infinity.
Graph of a function with a jump discontinuity.

Jump discontinuity

A function f ( x ) has a jump discontinuity    at x = a if the left- and right-hand limits both exist but are not equal: lim x a f ( x ) lim x a + f ( x ) .

Identifying removable discontinuity

Some functions have a discontinuity, but it is possible to redefine the function at that point to make it continuous. This type of function is said to have a removable discontinuity. Let’s look at the function y = f ( x ) represented by the graph in [link] . The function has a limit. However, there is a hole at x = a . The hole can be filled by extending the domain to include the input x = a and defining the corresponding output of the function at that value as the limit of the function at x = a .

Graph of an increasing function with a removable discontinuity at (a, f(a)).
Graph of function f with a removable discontinuity at x = a .

Removable discontinuity

A function f ( x ) has a removable discontinuity    at x = a if the limit, lim x a f ( x ) , exists, but either

  1. f ( a ) does not exist or
  2. f ( a ) , the value of the function at x = a does not equal the limit, f ( a ) lim x a f ( x ) .

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask