<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Find the common difference for an arithmetic sequence.
  • Write terms of an arithmetic sequence.
  • Use a recursive formula for an arithmetic sequence.
  • Use an explicit formula for an arithmetic sequence.

Companies often make large purchases, such as computers and vehicles, for business use. The book-value of these supplies decreases each year for tax purposes. This decrease in value is called depreciation. One method of calculating depreciation is straight-line depreciation, in which the value of the asset decreases by the same amount each year.

As an example, consider a woman who starts a small contracting business. She purchases a new truck for $25,000. After five years, she estimates that she will be able to sell the truck for $8,000. The loss in value of the truck will therefore be $17,000, which is $3,400 per year for five years. The truck will be worth $21,600 after the first year; $18,200 after two years; $14,800 after three years; $11,400 after four years; and $8,000 at the end of five years. In this section, we will consider specific kinds of sequences that will allow us to calculate depreciation, such as the truck’s value.

Finding common differences

The values of the truck in the example are said to form an arithmetic sequence because they change by a constant amount each year. Each term increases or decreases by the same constant value called the common difference of the sequence. For this sequence, the common difference is –3,400.

A sequence, {25000, 21600, 18200, 14800, 8000}, that shows the terms differ only by -3400.

The sequence below is another example of an arithmetic sequence. In this case, the constant difference is 3. You can choose any term    of the sequence    , and add 3 to find the subsequent term.

A sequence {3, 6, 9, 12, 15, ...} that shows the terms only differ by 3.

Arithmetic sequence

An arithmetic sequence    is a sequence that has the property that the difference between any two consecutive terms is a constant. This constant is called the common difference    . If a 1 is the first term of an arithmetic sequence and d is the common difference, the sequence will be:

{ a n } = { a 1 , a 1 + d , a 1 + 2 d , a 1 + 3 d , ... }

Finding common differences

Is each sequence arithmetic? If so, find the common difference.

  1. { 1 , 2 , 4 , 8 , 16 , ... }
  2. { 3 , 1 , 5 , 9 , 13 , ... }

Subtract each term from the subsequent term to determine whether a common difference exists.

  1. The sequence is not arithmetic because there is no common difference.

  2. The sequence is arithmetic because there is a common difference. The common difference is 4.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

If we are told that a sequence is arithmetic, do we have to subtract every term from the following term to find the common difference?

No. If we know that the sequence is arithmetic, we can choose any one term in the sequence, and subtract it from the subsequent term to find the common difference.

Is the given sequence arithmetic? If so, find the common difference.

{ 18 ,   16 ,   14 ,   12 ,   10 , }

The sequence is arithmetic. The common difference is 2.

Got questions? Get instant answers now!

Is the given sequence arithmetic? If so, find the common difference.

{ 1 ,   3 ,   6 ,   10 ,   15 , }

The sequence is not arithmetic because 3 1 6 3.

Got questions? Get instant answers now!

Writing terms of arithmetic sequences

Now that we can recognize an arithmetic sequence, we will find the terms if we are given the first term and the common difference. The terms can be found by beginning with the first term and adding the common difference repeatedly. In addition, any term can also be found by plugging in the values of n and d into formula below.

Questions & Answers

explain and give four Example hyperbolic function
Lukman Reply
The denominator of a certain fraction is 9 more than the numerator. If 6 is added to both terms of the fraction, the value of the fraction becomes 2/3. Find the original fraction. 2. The sum of the least and greatest of 3 consecutive integers is 60. What are the valu
1. x + 6 2 -------------- = _ x + 9 + 6 3 x + 6 3 ----------- x -- (cross multiply) x + 15 2 3(x + 6) = 2(x + 15) 3x + 18 = 2x + 30 (-2x from both) x + 18 = 30 (-18 from both) x = 12 Test: 12 + 6 18 2 -------------- = --- = --- 12 + 9 + 6 27 3
2. (x) + (x + 2) = 60 2x + 2 = 60 2x = 58 x = 29 29, 30, & 31
on number 2 question How did you got 2x +2
combine like terms. x + x + 2 is same as 2x + 2
Mark and Don are planning to sell each of their marble collections at a garage sale. If Don has 1 more than 3 times the number of marbles Mark has, how many does each boy have to sell if the total number of marbles is 113?
mariel Reply
Mark = x,. Don = 3x + 1 x + 3x + 1 = 113 4x = 112, x = 28 Mark = 28, Don = 85, 28 + 85 = 113
how do I set up the problem?
Harshika Reply
what is a solution set?
find the subring of gaussian integers?
hello, I am happy to help!
Shirley Reply
please can go further on polynomials quadratic
hi mam
I need quadratic equation link to Alpa Beta
Abdullahi Reply
find the value of 2x=32
Felix Reply
divide by 2 on each side of the equal sign to solve for x
Want to review on complex number 1.What are complex number 2.How to solve complex number problems.
yes i wantt to review
use the y -intercept and slope to sketch the graph of the equation y=6x
Only Reply
how do we prove the quadratic formular
Seidu Reply
please help me prove quadratic formula
hello, if you have a question about Algebra 2. I may be able to help. I am an Algebra 2 Teacher
Shirley Reply
thank you help me with how to prove the quadratic equation
may God blessed u for that. Please I want u to help me in sets.
what is math number
Tric Reply
x-2y+3z=-3 2x-y+z=7 -x+3y-z=6
Sidiki Reply
can you teacch how to solve that🙏
Solve for the first variable in one of the equations, then substitute the result into the other equation. Point For: (6111,4111,−411)(6111,4111,-411) Equation Form: x=6111,y=4111,z=−411x=6111,y=4111,z=-411
x=61/11 y=41/11 z=−4/11 x=61/11 y=41/11 z=-4/11
Need help solving this problem (2/7)^-2
Simone Reply
what is the coefficient of -4×
Mehri Reply
the operation * is x * y =x + y/ 1+(x × y) show if the operation is commutative if x × y is not equal to -1
Alfred Reply
Practice Key Terms 2

Get the best College algebra course in your pocket!

Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?