# 10.6 Parametric equations  (Page 5/6)

 Page 5 / 6

## Verbal

What is a system of parametric equations?

A pair of functions that is dependent on an external factor. The two functions are written in terms of the same parameter. For example, $\text{\hspace{0.17em}}x=f\left(t\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}y=f\left(t\right).$

Some examples of a third parameter are time, length, speed, and scale. Explain when time is used as a parameter.

Explain how to eliminate a parameter given a set of parametric equations.

Choose one equation to solve for $\text{\hspace{0.17em}}t,\text{\hspace{0.17em}}$ substitute into the other equation and simplify.

What is a benefit of writing a system of parametric equations as a Cartesian equation?

What is a benefit of using parametric equations?

Some equations cannot be written as functions, like a circle. However, when written as two parametric equations, separately the equations are functions.

Why are there many sets of parametric equations to represent on Cartesian function?

## Algebraic

For the following exercises, eliminate the parameter $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ to rewrite the parametric equation as a Cartesian equation.

$\left\{\begin{array}{l}x\left(t\right)=5-t\hfill \\ y\left(t\right)=8-2t\hfill \end{array}$

$y=-2+2x$

$\left\{\begin{array}{l}x\left(t\right)=6-3t\hfill \\ y\left(t\right)=10-t\hfill \end{array}$

$\left\{\begin{array}{l}x\left(t\right)=2t+1\hfill \\ y\left(t\right)=3\sqrt{t}\hfill \end{array}$

$y=3\sqrt{\frac{x-1}{2}}$

$\left\{\begin{array}{l}x\left(t\right)=3t-1\hfill \\ y\left(t\right)=2{t}^{2}\hfill \end{array}$

$\left\{\begin{array}{l}x\left(t\right)=2{e}^{t}\hfill \\ y\left(t\right)=1-5t\hfill \end{array}$

$x=2{e}^{\frac{1-y}{5}}\text{\hspace{0.17em}}$ or $\text{\hspace{0.17em}}y=1-5ln\left(\frac{x}{2}\right)$

$\left\{\begin{array}{l}x\left(t\right)={e}^{-2t}\hfill \\ y\left(t\right)=2{e}^{-t}\hfill \end{array}$

$\left\{\begin{array}{l}x\left(t\right)=4\text{log}\left(t\right)\hfill \\ y\left(t\right)=3+2t\hfill \end{array}$

$x=4\mathrm{log}\left(\frac{y-3}{2}\right)$

$\left\{\begin{array}{l}x\left(t\right)=\text{log}\left(2t\right)\hfill \\ y\left(t\right)=\sqrt{t-1}\hfill \end{array}$

$\left\{\begin{array}{l}x\left(t\right)={t}^{3}-t\hfill \\ y\left(t\right)=2t\hfill \end{array}$

$x={\left(\frac{y}{2}\right)}^{3}-\frac{y}{2}$

$\left\{\begin{array}{l}x\left(t\right)=t-{t}^{4}\hfill \\ y\left(t\right)=t+2\hfill \end{array}$

$\left\{\begin{array}{l}x\left(t\right)={e}^{2t}\hfill \\ y\left(t\right)={e}^{6t}\hfill \end{array}$

$y={x}^{3}$

$\left\{\begin{array}{l}x\left(t\right)={t}^{5}\hfill \\ y\left(t\right)={t}^{10}\hfill \end{array}$

${\left(\frac{x}{4}\right)}^{2}+{\left(\frac{y}{5}\right)}^{2}=1$

$\left\{\begin{array}{l}x\left(t\right)=3\mathrm{sin}\text{\hspace{0.17em}}t\hfill \\ y\left(t\right)=6\mathrm{cos}\text{\hspace{0.17em}}t\hfill \end{array}$

${y}^{2}=1-\frac{1}{2}x$

$\left\{\begin{array}{l}x\left(t\right)=\mathrm{cos}\text{\hspace{0.17em}}t+4\\ y\left(t\right)=2{\mathrm{sin}}^{2}t\end{array}$

$\left\{\begin{array}{l}x\left(t\right)=t-1\\ y\left(t\right)={t}^{2}\end{array}$

$y={x}^{2}+2x+1$

$\left\{\begin{array}{l}x\left(t\right)=-t\\ y\left(t\right)={t}^{3}+1\end{array}$

$\left\{\begin{array}{l}x\left(t\right)=2t-1\\ y\left(t\right)={t}^{3}-2\end{array}$

$y={\left(\frac{x+1}{2}\right)}^{3}-2$

For the following exercises, rewrite the parametric equation as a Cartesian equation by building an $x\text{-}y$ table.

$\left\{\begin{array}{l}x\left(t\right)=2t-1\\ y\left(t\right)=t+4\end{array}$

$\left\{\begin{array}{l}x\left(t\right)=4-t\\ y\left(t\right)=3t+2\end{array}$

$y=-3x+14$

$\left\{\begin{array}{l}x\left(t\right)=2t-1\\ y\left(t\right)=5t\end{array}$

$\left\{\begin{array}{l}x\left(t\right)=4t-1\\ y\left(t\right)=4t+2\end{array}$

$y=x+3$

For the following exercises, parameterize (write parametric equations for) each Cartesian equation by setting $x\left(t\right)=t$ or by setting $\text{\hspace{0.17em}}y\left(t\right)=t.$

$y\left(x\right)=3{x}^{2}+3$

$y\left(x\right)=2\mathrm{sin}\text{\hspace{0.17em}}x+1$

$\left\{\begin{array}{l}x\left(t\right)=t\hfill \\ y\left(t\right)=2\mathrm{sin}t+1\hfill \end{array}$

$x\left(y\right)=3\mathrm{log}\left(y\right)+y$

$x\left(y\right)=\sqrt{y}+2y$

$\left\{\begin{array}{l}x\left(t\right)=\sqrt{t}+2t\hfill \\ y\left(t\right)=t\hfill \end{array}$

For the following exercises, parameterize (write parametric equations for) each Cartesian equation by using $x\left(t\right)=a\mathrm{cos}\text{\hspace{0.17em}}t$ and $\text{\hspace{0.17em}}y\left(t\right)=b\mathrm{sin}\text{\hspace{0.17em}}t.\text{\hspace{0.17em}}$ Identify the curve.

$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{9}=1$

$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{36}=1$

$\left\{\begin{array}{l}x\left(t\right)=4\mathrm{cos}\text{\hspace{0.17em}}t\hfill \\ y\left(t\right)=6\mathrm{sin}\text{\hspace{0.17em}}t\hfill \end{array};\text{\hspace{0.17em}}$ Ellipse

${x}^{2}+{y}^{2}=16$

${x}^{2}+{y}^{2}=10$

$\left\{\begin{array}{l}x\left(t\right)=\sqrt{10}\mathrm{cos}t\hfill \\ y\left(t\right)=\sqrt{10}\mathrm{sin}t\hfill \end{array};\text{\hspace{0.17em}}$ Circle

Parameterize the line from $\text{\hspace{0.17em}}\left(3,0\right)\text{\hspace{0.17em}}$ to $\text{\hspace{0.17em}}\left(-2,-5\right)\text{\hspace{0.17em}}$ so that the line is at $\text{\hspace{0.17em}}\left(3,0\right)\text{\hspace{0.17em}}$ at $\text{\hspace{0.17em}}t=0,\text{\hspace{0.17em}}$ and at $\text{\hspace{0.17em}}\left(-2,-5\right)\text{\hspace{0.17em}}$ at $\text{\hspace{0.17em}}t=1.$

Parameterize the line from $\text{\hspace{0.17em}}\left(-1,0\right)\text{\hspace{0.17em}}$ to $\text{\hspace{0.17em}}\left(3,-2\right)\text{\hspace{0.17em}}$ so that the line is at $\text{\hspace{0.17em}}\left(-1,0\right)\text{\hspace{0.17em}}$ at $\text{\hspace{0.17em}}t=0,\text{\hspace{0.17em}}$ and at $\text{\hspace{0.17em}}\left(3,-2\right)\text{\hspace{0.17em}}$ at $\text{\hspace{0.17em}}t=1.$

$\left\{\begin{array}{l}x\left(t\right)=-1+4t\hfill \\ y\left(t\right)=-2t\hfill \end{array}$

Parameterize the line from $\text{\hspace{0.17em}}\left(-1,5\right)\text{\hspace{0.17em}}$ to $\text{\hspace{0.17em}}\left(2,3\right)$ so that the line is at $\text{\hspace{0.17em}}\left(-1,5\right)\text{\hspace{0.17em}}$ at $\text{\hspace{0.17em}}t=0,\text{\hspace{0.17em}}$ and at $\text{\hspace{0.17em}}\left(2,3\right)\text{\hspace{0.17em}}$ at $\text{\hspace{0.17em}}t=1.$

Parameterize the line from $\text{\hspace{0.17em}}\left(4,1\right)\text{\hspace{0.17em}}$ to $\text{\hspace{0.17em}}\left(6,-2\right)\text{\hspace{0.17em}}$ so that the line is at $\text{\hspace{0.17em}}\left(4,1\right)\text{\hspace{0.17em}}$ at $\text{\hspace{0.17em}}t=0,\text{\hspace{0.17em}}$ and at $\text{\hspace{0.17em}}\left(6,-2\right)\text{\hspace{0.17em}}$ at $\text{\hspace{0.17em}}t=1.$

$\left\{\begin{array}{l}x\left(t\right)=4+2t\hfill \\ y\left(t\right)=1-3t\hfill \end{array}$

## Technology

For the following exercises, use the table feature in the graphing calculator to determine whether the graphs intersect.

yes, at $t=2$

For the following exercises, use a graphing calculator to complete the table of values for each set of parametric equations.

$\left\{\begin{array}{l}{x}_{1}\left(t\right)=3{t}^{2}-3t+7\hfill \\ {y}_{1}\left(t\right)=2t+3\hfill \end{array}$

$t$ $x$ $y$
–1
0
1

$\left\{\begin{array}{l}{x}_{1}\left(t\right)={t}^{2}-4\hfill \\ {y}_{1}\left(t\right)=2{t}^{2}-1\hfill \end{array}$

$t$ $x$ $y$
1
2
3
$t$ $x$ $y$
1 -3 1
2 0 7
3 5 17

$\left\{\begin{array}{l}{x}_{1}\left(t\right)={t}^{4}\hfill \\ {y}_{1}\left(t\right)={t}^{3}+4\hfill \end{array}$

$t$ $x$ $y$
-1
0
1
2

## Extensions

Find two different sets of parametric equations for $\text{\hspace{0.17em}}y={\left(x+1\right)}^{2}.$

answers may vary:

Find two different sets of parametric equations for $\text{\hspace{0.17em}}y=3x-2.$

Find two different sets of parametric equations for $\text{\hspace{0.17em}}y={x}^{2}-4x+4.$

answers may vary: ,

#### Questions & Answers

what are odd numbers
micheal Reply
numbers that leave a remainder when divided by 2
Thorben
1,3,5,7,... 99,...867
Thorben
7%2=1, 679%2=1, 866245%2=1
Thorben
the third and the seventh terms of a G.P are 81 and 16, find the first and fifth terms.
Suleiman Reply
if a=3, b =4 and c=5 find the six trigonometric value sin
Martin Reply
pls how do I factorize x⁴+x³-7x²-x+6=0
Gift Reply
in a function the input value is called
Rimsha Reply
how do I test for values on the number line
Modesta Reply
if a=4 b=4 then a+b=
Rimsha Reply
a+b+2ab
Kin
commulative principle
DIOSDADO
a+b= 4+4=8
Mimi
If a=4 and b=4 then we add the value of a and b i.e a+b=4+4=8.
Tariq
what are examples of natural number
sani Reply
an equation for the line that goes through the point (-1,12) and has a slope of 2,3
Katheryn Reply
3y=-9x+25
Ishaq
show that the set of natural numberdoes not from agroup with addition or multiplication butit forms aseni group with respect toaaddition as well as multiplication
Komal Reply
x^20+x^15+x^10+x^5/x^2+1
Urmila Reply
evaluate each algebraic expression. 2x+×_2 if ×=5
Sarch Reply
if the ratio of the root of ax+bx+c =0, show that (m+1)^2 ac =b^2m
Awe Reply
By the definition, is such that 0!=1.why?
Unikpel Reply
(1+cosA+IsinA)(1+cosB+isinB)/(cos@+isin@)(cos$+isin$)
Ajay Reply
hatdog
Mark
jaks
Ryan

### Read also:

#### Get Jobilize Job Search Mobile App in your pocket Now!

Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

 By By By OpenStax By OpenStax By OpenStax By OpenStax By Sheila Lopez By OpenStax By Abishek Devaraj By Hoy Wen By Tess Armstrong By Steve Gibbs