<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Solve counting problems using the Addition Principle.
  • Solve counting problems using the Multiplication Principle.
  • Solve counting problems using permutations involving n distinct objects.
  • Solve counting problems using combinations.
  • Find the number of subsets of a given set.
  • Solve counting problems using permutations involving n non-distinct objects.

A new company sells customizable cases for tablets and smartphones. Each case comes in a variety of colors and can be personalized for an additional fee with images or a monogram. A customer can choose not to personalize or could choose to have one, two, or three images or a monogram. The customer can choose the order of the images and the letters in the monogram. The company is working with an agency to develop a marketing campaign with a focus on the huge number of options they offer. Counting the possibilities is challenging!

We encounter a wide variety of counting problems every day. There is a branch of mathematics devoted to the study of counting problems such as this one. Other applications of counting include secure passwords, horse racing outcomes, and college scheduling choices. We will examine this type of mathematics in this section.

Using the addition principle

The company that sells customizable cases offers cases for tablets and smartphones. There are 3 supported tablet models and 5 supported smartphone models. The Addition Principle tells us that we can add the number of tablet options to the number of smartphone options to find the total number of options. By the Addition Principle, there are 8 total options, as we can see in [link] .

The addition of 3 iPods and 4 iPhones.

The addition principle

According to the Addition Principle    , if one event can occur in m ways and a second event with no common outcomes can occur in n ways, then the first or second event can occur in m + n ways.

Using the addition principle

There are 2 vegetarian entrée options and 5 meat entrée options on a dinner menu. What is the total number of entrée options?

We can add the number of vegetarian options to the number of meat options to find the total number of entrée options.

The addition of the type of options for an entree.

There are 7 total options.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

A student is shopping for a new computer. He is deciding among 3 desktop computers and 4 laptop computers. What is the total number of computer options?


Got questions? Get instant answers now!

Using the multiplication principle

The Multiplication Principle applies when we are making more than one selection. Suppose we are choosing an appetizer, an entrée, and a dessert. If there are 2 appetizer options, 3 entrée options, and 2 dessert options on a fixed-price dinner menu, there are a total of 12 possible choices of one each as shown in the tree diagram in [link] .

A tree diagram of the different menu combinations.

The possible choices are:

  1. soup, chicken, cake
  2. soup, chicken, pudding
  3. soup, fish, cake
  4. soup, fish, pudding
  5. soup, steak, cake
  6. soup, steak, pudding
  7. salad, chicken, cake
  8. salad, chicken, pudding
  9. salad, fish, cake
  10. salad, fish, pudding
  11. salad, steak, cake
  12. salad, steak, pudding We can also find the total number of possible dinners by multiplying.

We could also conclude that there are 12 possible dinner choices simply by applying the Multiplication Principle.

Questions & Answers

find the value of 2x=32
Felix Reply
divide by 2 on each side of the equal sign to solve for x
use the y -intercept and slope to sketch the graph of the equation y=6x
Only Reply
how do we prove the quadratic formular
Seidu Reply
hello, if you have a question about Algebra 2. I may be able to help. I am an Algebra 2 Teacher
Shirley Reply
thank you help me with how to prove the quadratic equation
may God blessed u for that. Please I want u to help me in sets.
what is math number
Tric Reply
x-2y+3z=-3 2x-y+z=7 -x+3y-z=6
Sidiki Reply
Need help solving this problem (2/7)^-2
Simone Reply
what is the coefficient of -4×
Mehri Reply
the operation * is x * y =x + y/ 1+(x × y) show if the operation is commutative if x × y is not equal to -1
Alfred Reply
An investment account was opened with an initial deposit of $9,600 and earns 7.4% interest, compounded continuously. How much will the account be worth after 15 years?
Kala Reply
lim x to infinity e^1-e^-1/log(1+x)
given eccentricity and a point find the equiation
Moses Reply
12, 17, 22.... 25th term
Alexandra Reply
12, 17, 22.... 25th term
College algebra is really hard?
Shirleen Reply
Absolutely, for me. My problems with math started in First grade...involving a nun Sister Anastasia, bad vision, talking & getting expelled from Catholic school. When it comes to math I just can't focus and all I can hear is our family silverware banging and clanging on the pink Formica table.
I'm 13 and I understand it great
I am 1 year old but I can do it! 1+1=2 proof very hard for me though.
Not really they are just easy concepts which can be understood if you have great basics. I am 14 I understood them easily.
hi vedant can u help me with some assignments
find the 15th term of the geometric sequince whose first is 18 and last term of 387
Jerwin Reply
I know this work
Practice Key Terms 5

Get the best College algebra course in your pocket!

Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?