# 6.2 Graphs of the other trigonometric functions  (Page 8/9)

 Page 8 / 9

## Using the graphs of trigonometric functions to solve real-world problems

Many real-world scenarios represent periodic functions and may be modeled by trigonometric functions. As an example, let’s return to the scenario from the section opener. Have you ever observed the beam formed by the rotating light on a police car and wondered about the movement of the light beam itself across the wall? The periodic behavior of the distance the light shines as a function of time is obvious, but how do we determine the distance? We can use the tangent function .

## Using trigonometric functions to solve real-world scenarios

Suppose the function $\text{\hspace{0.17em}}y=5\mathrm{tan}\left(\frac{\pi }{4}t\right)\text{\hspace{0.17em}}$ marks the distance in the movement of a light beam from the top of a police car across a wall where $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ is the time in seconds and $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ is the distance in feet from a point on the wall directly across from the police car.

1. Find and interpret the stretching factor and period.
2. Graph on the interval $\text{\hspace{0.17em}}\left[0,5\right].$
3. Evaluate $\text{\hspace{0.17em}}f\left(1\right)\text{\hspace{0.17em}}$ and discuss the function’s value at that input.
1. We know from the general form of $\text{\hspace{0.17em}}y=A\mathrm{tan}\left(Bt\right)\text{\hspace{0.17em}}$ that $\text{\hspace{0.17em}}|A|\text{\hspace{0.17em}}$ is the stretching factor and $\text{\hspace{0.17em}}\frac{\pi }{B}\text{\hspace{0.17em}}$ is the period.

We see that the stretching factor is 5. This means that the beam of light will have moved 5 ft after half the period.

The period is $\text{\hspace{0.17em}}\frac{\pi }{\frac{\pi }{4}}=\frac{\pi }{1}\cdot \frac{4}{\pi }=4.\text{\hspace{0.17em}}$ This means that every 4 seconds, the beam of light sweeps the wall. The distance from the spot across from the police car grows larger as the police car approaches.

2. To graph the function, we draw an asymptote at $\text{\hspace{0.17em}}t=2\text{\hspace{0.17em}}$ and use the stretching factor and period. See [link]
3. period: $\text{\hspace{0.17em}}f\left(1\right)=5\mathrm{tan}\left(\frac{\pi }{4}\left(1\right)\right)=5\left(1\right)=5;\text{\hspace{0.17em}}$ after 1 second, the beam of has moved 5 ft from the spot across from the police car.

Access these online resources for additional instruction and practice with graphs of other trigonometric functions.

## Key equations

 Shifted, compressed, and/or stretched tangent function $y=A\text{\hspace{0.17em}}\mathrm{tan}\left(Bx-C\right)+D$ Shifted, compressed, and/or stretched secant function $y=A\text{\hspace{0.17em}}\mathrm{sec}\left(Bx-C\right)+D$ Shifted, compressed, and/or stretched cosecant function $y=A\text{\hspace{0.17em}}\mathrm{csc}\left(Bx-C\right)+D$ Shifted, compressed, and/or stretched cotangent function $y=A\text{\hspace{0.17em}}\mathrm{cot}\left(Bx-C\right)+D$

## Key concepts

• The tangent function has period $\text{\hspace{0.17em}}\pi .$
• $f\left(x\right)=A\mathrm{tan}\left(Bx-C\right)+D\text{\hspace{0.17em}}$ is a tangent with vertical and/or horizontal stretch/compression and shift. See [link] , [link] , and [link] .
• The secant and cosecant are both periodic functions with a period of $\text{\hspace{0.17em}}2\pi .\text{\hspace{0.17em}}$ $f\left(x\right)=A\mathrm{sec}\left(Bx-C\right)+D\text{\hspace{0.17em}}$ gives a shifted, compressed, and/or stretched secant function graph. See [link] and [link] .
• $f\left(x\right)=A\mathrm{csc}\left(Bx-C\right)+D\text{\hspace{0.17em}}$ gives a shifted, compressed, and/or stretched cosecant function graph. See [link] and [link] .
• The cotangent function has period $\text{\hspace{0.17em}}\pi \text{\hspace{0.17em}}$ and vertical asymptotes at $\text{\hspace{0.17em}}0,±\pi ,±2\pi ,....$
• The range of cotangent is $\text{\hspace{0.17em}}\left(-\infty ,\infty \right),\text{\hspace{0.17em}}$ and the function is decreasing at each point in its range.
• The cotangent is zero at $\text{\hspace{0.17em}}±\frac{\pi }{2},±\frac{3\pi }{2},....$
• $f\left(x\right)=A\mathrm{cot}\left(Bx-C\right)+D\text{\hspace{0.17em}}$ is a cotangent with vertical and/or horizontal stretch/compression and shift. See [link] and [link] .
• Real-world scenarios can be solved using graphs of trigonometric functions. See [link] .

## Verbal

Explain how the graph of the sine function can be used to graph $\text{\hspace{0.17em}}y=\mathrm{csc}\text{\hspace{0.17em}}x.$

Since $\text{\hspace{0.17em}}y=\mathrm{csc}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ is the reciprocal function of $\text{\hspace{0.17em}}y=\mathrm{sin}\text{\hspace{0.17em}}x,\text{\hspace{0.17em}}$ you can plot the reciprocal of the coordinates on the graph of $\text{\hspace{0.17em}}y=\mathrm{sin}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ to obtain the y -coordinates of $\text{\hspace{0.17em}}y=\mathrm{csc}\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ The x -intercepts of the graph $\text{\hspace{0.17em}}y=\mathrm{sin}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ are the vertical asymptotes for the graph of $\text{\hspace{0.17em}}y=\mathrm{csc}\text{\hspace{0.17em}}x.$

find the equation of the line if m=3, and b=-2
graph the following linear equation using intercepts method. 2x+y=4
Ashley
how
Wargod
what?
John
ok, one moment
UriEl
how do I post your graph for you?
UriEl
it won't let me send an image?
UriEl
also for the first one... y=mx+b so.... y=3x-2
UriEl
y=mx+b you were already given the 'm' and 'b'. so.. y=3x-2
Tommy
"7"has an open circle and "10"has a filled in circle who can I have a set builder notation
x=-b+_Гb2-(4ac) ______________ 2a
I've run into this: x = r*cos(angle1 + angle2) Which expands to: x = r(cos(angle1)*cos(angle2) - sin(angle1)*sin(angle2)) The r value confuses me here, because distributing it makes: (r*cos(angle2))(cos(angle1) - (r*sin(angle2))(sin(angle1)) How does this make sense? Why does the r distribute once
so good
abdikarin
this is an identity when 2 adding two angles within a cosine. it's called the cosine sum formula. there is also a different formula when cosine has an angle minus another angle it's called the sum and difference formulas and they are under any list of trig identities
strategies to form the general term
carlmark
How can you tell what type of parent function a graph is ?
generally by how the graph looks and understanding what the base parent functions look like and perform on a graph
William
if you have a graphed line, you can have an idea by how the directions of the line turns, i.e. negative, positive, zero
William
y=x will obviously be a straight line with a zero slope
William
y=x^2 will have a parabolic line opening to positive infinity on both sides of the y axis vice versa with y=-x^2 you'll have both ends of the parabolic line pointing downward heading to negative infinity on both sides of the y axis
William
y=x will be a straight line, but it will have a slope of one. Remember, if y=1 then x=1, so for every unit you rise you move over positively one unit. To get a straight line with a slope of 0, set y=1 or any integer.
Aaron
yes, correction on my end, I meant slope of 1 instead of slope of 0
William
what is f(x)=
I don't understand
Joe
Typically a function 'f' will take 'x' as input, and produce 'y' as output. As 'f(x)=y'. According to Google, "The range of a function is the complete set of all possible resulting values of the dependent variable (y, usually), after we have substituted the domain."
Thomas
Sorry, I don't know where the "Â"s came from. They shouldn't be there. Just ignore them. :-)
Thomas
Darius
Thanks.
Thomas
Â
Thomas
It is the Â that should not be there. It doesn't seem to show if encloses in quotation marks. "Â" or 'Â' ... Â
Thomas
Now it shows, go figure?
Thomas
what is this?
i do not understand anything
unknown
lol...it gets better
Darius
I've been struggling so much through all of this. my final is in four weeks 😭
Tiffany
this book is an excellent resource! have you guys ever looked at the online tutoring? there's one that is called "That Tutor Guy" and he goes over a lot of the concepts
Darius
thank you I have heard of him. I should check him out.
Tiffany
is there any question in particular?
Joe
I have always struggled with math. I get lost really easy, if you have any advice for that, it would help tremendously.
Tiffany
Sure, are you in high school or college?
Darius
Hi, apologies for the delayed response. I'm in college.
Tiffany
how to solve polynomial using a calculator
So a horizontal compression by factor of 1/2 is the same as a horizontal stretch by a factor of 2, right?
The center is at (3,4) a focus is at (3,-1), and the lenght of the major axis is 26
The center is at (3,4) a focus is at (3,-1) and the lenght of the major axis is 26 what will be the answer?
Rima
I done know
Joe
What kind of answer is that😑?
Rima
I had just woken up when i got this message
Joe
Rima
i have a question.
Abdul
how do you find the real and complex roots of a polynomial?
Abdul
@abdul with delta maybe which is b(square)-4ac=result then the 1st root -b-radical delta over 2a and the 2nd root -b+radical delta over 2a. I am not sure if this was your question but check it up
Nare
This is the actual question: Find all roots(real and complex) of the polynomial f(x)=6x^3 + x^2 - 4x + 1
Abdul
@Nare please let me know if you can solve it.
Abdul
I have a question
juweeriya
hello guys I'm new here? will you happy with me
mustapha
The average annual population increase of a pack of wolves is 25.
how do you find the period of a sine graph
Period =2π if there is a coefficient (b), just divide the coefficient by 2π to get the new period
Am
if not then how would I find it from a graph
Imani
by looking at the graph, find the distance between two consecutive maximum points (the highest points of the wave). so if the top of one wave is at point A (1,2) and the next top of the wave is at point B (6,2), then the period is 5, the difference of the x-coordinates.
Am
you could also do it with two consecutive minimum points or x-intercepts
Am
I will try that thank u
Imani
Case of Equilateral Hyperbola
ok
Zander
ok
Shella
f(x)=4x+2, find f(3)
Benetta
f(3)=4(3)+2 f(3)=14
lamoussa
14
Vedant
pre calc teacher: "Plug in Plug in...smell's good" f(x)=14
Devante
8x=40
Chris
Explain why log a x is not defined for a < 0
the sum of any two linear polynomial is what