# 13.6 Binomial theorem

 Page 1 / 6
In this section, you will:
• Apply the Binomial Theorem.

A polynomial with two terms is called a binomial. We have already learned to multiply binomials and to raise binomials to powers, but raising a binomial to a high power can be tedious and time-consuming. In this section, we will discuss a shortcut that will allow us to find $\text{\hspace{0.17em}}{\left(x+y\right)}^{n}\text{\hspace{0.17em}}$ without multiplying the binomial by itself $n$ times.

## Identifying binomial coefficients

In Counting Principles , we studied combinations . In the shortcut to finding $\text{\hspace{0.17em}}{\left(x+y\right)}^{n},\text{\hspace{0.17em}}$ we will need to use combinations to find the coefficients that will appear in the expansion of the binomial. In this case, we use the notation $\text{\hspace{0.17em}}\left(\begin{array}{c}n\\ r\end{array}\right)\text{\hspace{0.17em}}$ instead of $C\left(n,r\right),$ but it can be calculated in the same way. So

$\text{\hspace{0.17em}}\left(\begin{array}{c}n\\ r\end{array}\right)=C\left(n,r\right)=\frac{n!}{r!\left(n-r\right)!}\text{\hspace{0.17em}}$

The combination $\text{\hspace{0.17em}}\left(\begin{array}{c}n\\ r\end{array}\right)\text{\hspace{0.17em}}$ is called a binomial coefficient . An example of a binomial coefficient is $\text{\hspace{0.17em}}\left(\begin{array}{c}5\\ 2\end{array}\right)=C\left(5,2\right)=10.\text{\hspace{0.17em}}$

## Binomial coefficients

If $n$ and $r$ are integers greater than or equal to 0 with $n\ge r,$ then the binomial coefficient    is

$\left(\begin{array}{c}n\\ r\end{array}\right)=C\left(n,r\right)=\frac{n!}{r!\left(n-r\right)!}$

Is a binomial coefficient always a whole number?

Yes. Just as the number of combinations must always be a whole number, a binomial coefficient will always be a whole number.

## Finding binomial coefficients

Find each binomial coefficient.

1. $\left(\begin{array}{c}5\\ 3\end{array}\right)$
2. $\left(\begin{array}{c}9\\ 2\end{array}\right)$
3. $\left(\begin{array}{c}9\\ 7\end{array}\right)$

Use the formula to calculate each binomial coefficient. You can also use the ${n}_{}{C}_{r}$ function on your calculator.

$\left(\begin{array}{c}n\\ r\end{array}\right)=C\left(n,r\right)=\frac{n!}{r!\left(n-r\right)!}$
1. $\left(\begin{array}{c}5\\ 3\end{array}\right)=\frac{5!}{3!\left(5-3\right)!}=\frac{5\cdot 4\cdot 3!}{3!2!}=10$
2. $\left(\begin{array}{c}9\\ 2\end{array}\right)=\frac{9!}{2!\left(9-2\right)!}=\frac{9\cdot 8\cdot 7!}{2!7!}=36$
3. $\left(\begin{array}{c}9\\ 7\end{array}\right)=\frac{9!}{7!\left(9-7\right)!}=\frac{9\cdot 8\cdot 7!}{7!2!}=36$

Find each binomial coefficient.

1. $\text{\hspace{0.17em}}\left(\begin{array}{c}7\\ 3\end{array}\right)\text{\hspace{0.17em}}$
2. $\text{\hspace{0.17em}}\left(\begin{array}{c}11\\ 4\end{array}\right)\text{\hspace{0.17em}}$

1. 35
2. 330

## Using the binomial theorem

When we expand ${\left(x+y\right)}^{n}$ by multiplying, the result is called a binomial expansion    , and it includes binomial coefficients. If we wanted to expand ${\left(x+y\right)}^{52},$ we might multiply $\left(x+y\right)$ by itself fifty-two times. This could take hours! If we examine some simple binomial expansions, we can find patterns that will lead us to a shortcut for finding more complicated binomial expansions.

$\begin{array}{l}{\left(x+y\right)}^{2}={x}^{2}+2xy+{y}^{2}\hfill \\ {\left(x+y\right)}^{3}={x}^{3}+3{x}^{2}y+3x{y}^{2}+{y}^{3}\hfill \\ {\left(x+y\right)}^{4}={x}^{4}+4{x}^{3}y+6{x}^{2}{y}^{2}+4x{y}^{3}+{y}^{4}\hfill \end{array}$

First, let’s examine the exponents. With each successive term, the exponent for $x$ decreases and the exponent for $y$ increases. The sum of the two exponents is $n$ for each term.

Next, let’s examine the coefficients. Notice that the coefficients increase and then decrease in a symmetrical pattern. The coefficients follow a pattern:

$\left(\begin{array}{c}n\\ 0\end{array}\right),\left(\begin{array}{c}n\\ 1\end{array}\right),\left(\begin{array}{c}n\\ 2\end{array}\right),...,\left(\begin{array}{c}n\\ n\end{array}\right).$

These patterns lead us to the Binomial Theorem , which can be used to expand any binomial.

$\begin{array}{ll}{\left(x+y\right)}^{n}\hfill & =\sum _{k=0}^{n}\left(\begin{array}{c}n\\ k\end{array}\right){x}^{n-k}{y}^{k}\hfill \\ \hfill & ={x}^{n}+\left(\begin{array}{c}n\\ 1\end{array}\right){x}^{n-1}y+\left(\begin{array}{c}n\\ 2\end{array}\right){x}^{n-2}{y}^{2}+...+\left(\begin{array}{c}n\\ n-1\end{array}\right)x{y}^{n-1}+{y}^{n}\hfill \end{array}$

Another way to see the coefficients is to examine the expansion of a binomial in general form, $\text{\hspace{0.17em}}x+y,\text{\hspace{0.17em}}$ to successive powers 1, 2, 3, and 4.

$\begin{array}{l}{\left(x+y\right)}^{1}=x+y\hfill \\ {\left(x+y\right)}^{2}={x}^{2}+2xy+{y}^{2}\hfill \\ {\left(x+y\right)}^{3}={x}^{3}+3{x}^{2}y+3x{y}^{2}+{y}^{3}\hfill \\ {\left(x+y\right)}^{4}={x}^{4}+4{x}^{3}y+6{x}^{2}{y}^{2}+4x{y}^{3}+{y}^{4}\hfill \end{array}$

Can you guess the next expansion for the binomial $\text{\hspace{0.17em}}{\left(x+y\right)}^{5}?\text{\hspace{0.17em}}$

See [link] , which illustrates the following:

• There are $n+1$ terms in the expansion of ${\left(x+y\right)}^{n}.$
• The degree (or sum of the exponents) for each term is $n.$
• The powers on $x$ begin with $n$ and decrease to 0.
• The powers on $y$ begin with 0 and increase to $n.$
• The coefficients are symmetric.

To determine the expansion on ${\left(x+y\right)}^{5},$ we see $n=5,$ thus, there will be 5+1 = 6 terms. Each term has a combined degree of 5. In descending order for powers of $x,$ the pattern is as follows:

the third and the seventh terms of a G.P are 81 and 16, find the first and fifth terms.
if a=3, b =4 and c=5 find the six trigonometric value sin
pls how do I factorize x⁴+x³-7x²-x+6=0
in a function the input value is called
how do I test for values on the number line
if a=4 b=4 then a+b=
a+b+2ab
Kin
commulative principle
a+b= 4+4=8
Mimi
If a=4 and b=4 then we add the value of a and b i.e a+b=4+4=8.
Tariq
what are examples of natural number
an equation for the line that goes through the point (-1,12) and has a slope of 2,3
3y=-9x+25
Ishaq
show that the set of natural numberdoes not from agroup with addition or multiplication butit forms aseni group with respect toaaddition as well as multiplication
x^20+x^15+x^10+x^5/x^2+1
evaluate each algebraic expression. 2x+×_2 if ×=5
if the ratio of the root of ax+bx+c =0, show that (m+1)^2 ac =b^2m
By the definition, is such that 0!=1.why?
(1+cosA+IsinA)(1+cosB+isinB)/(cos@+isin@)(cos$+isin$)
hatdog
Mark
jaks
Ryan
how we can draw three triangles of distinctly different shapes. All the angles will be cutt off each triangle and placed side by side with vertices touching