# 9.8 Solving systems with cramer's rule  (Page 7/11)

 Page 7 / 11

Men aged 20–29, 30–39, and 40–49 made up 78% of the population at a prison last year. This year, the same age groups made up 82.08% of the population. The 20–29 age group increased by 20%, the 30–39 age group increased by 2%, and the 40–49 age group decreased to $\text{\hspace{0.17em}}\frac{3}{4}\text{\hspace{0.17em}}$ of their previous population. Originally, the 30–39 age group had 2% more prisoners than the 20–29 age group. Determine the prison population percentage for each age group last year.

At a women’s prison down the road, the total number of inmates aged 20–49 totaled 5,525. This year, the 20–29 age group increased by 10%, the 30–39 age group decreased by 20%, and the 40–49 age group doubled. There are now 6,040 prisoners. Originally, there were 500 more in the 30–39 age group than the 20–29 age group. Determine the prison population for each age group last year.

20–29: 2,100, 30–39: 2,600, 40–49: 825

For the following exercises, use this scenario: A health-conscious company decides to make a trail mix out of almonds, dried cranberries, and chocolate-covered cashews. The nutritional information for these items is shown in [link] .

Fat (g) Protein (g) Carbohydrates (g)
Almonds (10) 6 2 3
Cranberries (10) 0.02 0 8
Cashews (10) 7 3.5 5.5

For the special “low-carb”trail mix, there are 1,000 pieces of mix. The total number of carbohydrates is 425 g, and the total amount of fat is 570.2 g. If there are 200 more pieces of cashews than cranberries, how many of each item is in the trail mix?

For the “hiking” mix, there are 1,000 pieces in the mix, containing 390.8 g of fat, and 165 g of protein. If there is the same amount of almonds as cashews, how many of each item is in the trail mix?

300 almonds, 400 cranberries, 300 cashews

For the “energy-booster” mix, there are 1,000 pieces in the mix, containing 145 g of protein and 625 g of carbohydrates. If the number of almonds and cashews summed together is equivalent to the amount of cranberries, how many of each item is in the trail mix?

## Systems of Linear Equations: Two Variables

For the following exercises, determine whether the ordered pair is a solution to the system of equations.

$\begin{array}{l}3x-y=4\\ x+4y=-3\text{\hspace{0.17em}}\end{array}$ and $\text{\hspace{0.17em}}\left(-1,1\right)$

No

$\begin{array}{l}6x-2y=24\\ -3x+3y=18\text{\hspace{0.17em}}\end{array}$ and $\text{\hspace{0.17em}}\left(9,15\right)$

For the following exercises, use substitution to solve the system of equations.

$\begin{array}{l}10x+5y=-5\hfill \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}3x-2y=-12\hfill \end{array}$

$\left(-2,3\right)$

$\begin{array}{l}\frac{4}{7}x+\frac{1}{5}y=\frac{43}{70}\\ \frac{5}{6}x-\frac{1}{3}y=-\frac{2}{3}\end{array}$

$\begin{array}{l}5x+6y=14\\ 4x+8y=8\end{array}$

$\left(4,-1\right)$

For the following exercises, use addition to solve the system of equations.

$\begin{array}{l}3x+2y=-7\\ 2x+4y=6\end{array}$

$\begin{array}{r}3x+4y=2\\ 9x+12y=3\end{array}$

No solutions exist.

$\begin{array}{l}8x+4y=2\\ 6x-5y=0.7\end{array}$

For the following exercises, write a system of equations to solve each problem. Solve the system of equations.

A factory has a cost of production $\text{\hspace{0.17em}}C\left(x\right)=150x+15\text{,}000\text{\hspace{0.17em}}$ and a revenue function $\text{\hspace{0.17em}}R\left(x\right)=200x.\text{\hspace{0.17em}}$ What is the break-even point?

$\left(300,60,000\right)$

A performer charges $\text{\hspace{0.17em}}C\left(x\right)=50x+10\text{,}000,\text{\hspace{0.17em}}$ where $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ is the total number of attendees at a show. The venue charges \$75 per ticket. After how many people buy tickets does the venue break even, and what is the value of the total tickets sold at that point?

$\left(400,30,000\right)$

## Systems of Linear Equations: Three Variables

For the following exercises, solve the system of three equations using substitution or addition.

how fast can i understand functions without much difficulty
what is set?
a colony of bacteria is growing exponentially doubling in size every 100 minutes. how much minutes will it take for the colony of bacteria to triple in size
I got 300 minutes. is it right?
Patience
no. should be about 150 minutes.
Jason
It should be 158.5 minutes.
Mr
ok, thanks
Patience
100•3=300 300=50•2^x 6=2^x x=log_2(6) =2.5849625 so, 300=50•2^2.5849625 and, so, the # of bacteria will double every (100•2.5849625) = 258.49625 minutes
Thomas
what is the importance knowing the graph of circular functions?
can get some help basic precalculus
What do you need help with?
Andrew
how to convert general to standard form with not perfect trinomial
can get some help inverse function
ismail
Rectangle coordinate
how to find for x
it depends on the equation
Robert
yeah, it does. why do we attempt to gain all of them one side or the other?
Melissa
whats a domain
The domain of a function is the set of all input on which the function is defined. For example all real numbers are the Domain of any Polynomial function.
Spiro
Spiro; thanks for putting it out there like that, 😁
Melissa
foci (–7,–17) and (–7,17), the absolute value of the differenceof the distances of any point from the foci is 24.
difference between calculus and pre calculus?
give me an example of a problem so that I can practice answering
x³+y³+z³=42
Robert
dont forget the cube in each variable ;)
Robert
of she solves that, well ... then she has a lot of computational force under her command ....
Walter
what is a function?
I want to learn about the law of exponent
explain this