# 9.5 Solving trigonometric equations  (Page 5/10)

 Page 5 / 10

## Solving an equation using an identity

Solve the equation exactly using an identity: $\text{\hspace{0.17em}}3\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\theta +3=2\text{\hspace{0.17em}}{\mathrm{sin}}^{2}\theta ,0\le \theta <2\pi .$

If we rewrite the right side, we can write the equation in terms of cosine:

$\begin{array}{ccc}\hfill 3\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\theta +3& =& 2{\mathrm{sin}}^{2}\theta \hfill \\ \hfill 3\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\theta +3& =& 2\left(1-{\mathrm{cos}}^{2}\theta \right)\hfill \\ \hfill 3\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\theta +3& =& 2-2{\mathrm{cos}}^{2}\theta \hfill \\ \hfill 2\text{\hspace{0.17em}}{\mathrm{cos}}^{2}\theta +3\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\theta +1& =& 0\hfill \\ \hfill \left(2\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\theta +1\right)\left(\mathrm{cos}\text{\hspace{0.17em}}\theta +1\right)& =& 0\hfill \\ \hfill 2\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\theta +1& =& 0\hfill \\ \hfill \mathrm{cos}\text{\hspace{0.17em}}\theta & =& -\frac{1}{2}\hfill \\ \hfill \theta & =& \frac{2\pi }{3},\frac{4\pi }{3}\hfill \\ \hfill \mathrm{cos}\text{\hspace{0.17em}}\theta +1& =& 0\hfill \\ \hfill \mathrm{cos}\text{\hspace{0.17em}}\theta & =& -1\hfill \\ \hfill \theta & =& \pi \hfill \end{array}$

Our solutions are $\text{\hspace{0.17em}}\theta =\frac{2\pi }{3},\frac{4\pi }{3},\pi .$

## Solving trigonometric equations with multiple angles

Sometimes it is not possible to solve a trigonometric equation with identities that have a multiple angle, such as $\text{\hspace{0.17em}}\mathrm{sin}\left(2x\right)\text{\hspace{0.17em}}$ or $\text{\hspace{0.17em}}\mathrm{cos}\left(3x\right).\text{\hspace{0.17em}}$ When confronted with these equations, recall that $\text{\hspace{0.17em}}y=\mathrm{sin}\left(2x\right)\text{\hspace{0.17em}}$ is a horizontal compression    by a factor of 2 of the function $\text{\hspace{0.17em}}y=\mathrm{sin}\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ On an interval of $\text{\hspace{0.17em}}2\pi ,$ we can graph two periods of $\text{\hspace{0.17em}}y=\mathrm{sin}\left(2x\right),$ as opposed to one cycle of $\text{\hspace{0.17em}}y=\mathrm{sin}\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ This compression of the graph leads us to believe there may be twice as many x -intercepts or solutions to $\text{\hspace{0.17em}}\mathrm{sin}\left(2x\right)=0\text{\hspace{0.17em}}$ compared to $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}x=0.\text{\hspace{0.17em}}$ This information will help us solve the equation.

## Solving a multiple angle trigonometric equation

Solve exactly: $\text{\hspace{0.17em}}\mathrm{cos}\left(2x\right)=\frac{1}{2}\text{\hspace{0.17em}}$ on $\text{\hspace{0.17em}}\left[0,2\pi \right).$

We can see that this equation is the standard equation with a multiple of an angle. If $\text{\hspace{0.17em}}\mathrm{cos}\left(\alpha \right)=\frac{1}{2},$ we know $\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}$ is in quadrants I and IV. While $\text{\hspace{0.17em}}\theta ={\mathrm{cos}}^{-1}\frac{1}{2}\text{\hspace{0.17em}}$ will only yield solutions in quadrants I and II, we recognize that the solutions to the equation $\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\theta =\frac{1}{2}\text{\hspace{0.17em}}$ will be in quadrants I and IV.

Therefore, the possible angles are $\text{\hspace{0.17em}}\theta =\frac{\pi }{3}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\theta =\frac{5\pi }{3}.\text{\hspace{0.17em}}$ So, $2x=\frac{\pi }{3}\text{\hspace{0.17em}}$ or $\text{\hspace{0.17em}}2x=\frac{5\pi }{3},$ which means that $\text{\hspace{0.17em}}x=\frac{\pi }{6}\text{\hspace{0.17em}}$ or $\text{\hspace{0.17em}}x=\frac{5\pi }{6}.\text{\hspace{0.17em}}$ Does this make sense? Yes, because $\text{\hspace{0.17em}}\mathrm{cos}\left(2\left(\frac{\pi }{6}\right)\right)=\mathrm{cos}\left(\frac{\pi }{3}\right)=\frac{1}{2}.$

In quadrant I, $\text{\hspace{0.17em}}2x=\frac{\pi }{3},$ so $\text{\hspace{0.17em}}x=\frac{\pi }{6}\text{\hspace{0.17em}}$ as noted. Let us revolve around the circle again:

$\begin{array}{ccc}\hfill 2x& =& \frac{\pi }{3}+2\pi \hfill \\ & =& \frac{\pi }{3}+\frac{6\pi }{3}\hfill \\ & =& \frac{7\pi }{3}\hfill \end{array}$

so $\text{\hspace{0.17em}}x=\frac{7\pi }{6}.$

One more rotation yields

$\begin{array}{ccc}\hfill 2x& =& \frac{\pi }{3}+4\pi \hfill \\ & =& \frac{\pi }{3}+\frac{12\pi }{3}\hfill \\ & =& \frac{13\pi }{3}\hfill \end{array}$

$x=\frac{13\pi }{6}>2\pi ,$ so this value for $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ is larger than $\text{\hspace{0.17em}}2\pi ,$ so it is not a solution on $\text{\hspace{0.17em}}\left[0,2\pi \right).$

In quadrant IV, $\text{\hspace{0.17em}}2x=\frac{5\pi }{3},$ so $\text{\hspace{0.17em}}x=\frac{5\pi }{6}\text{\hspace{0.17em}}$ as noted. Let us revolve around the circle again:

$\begin{array}{ccc}\hfill 2x& =& \frac{5\pi }{3}+2\pi \hfill \\ & =& \frac{5\pi }{3}+\frac{6\pi }{3}\hfill \\ & =& \frac{11\pi }{3}\hfill \end{array}$

so $\text{\hspace{0.17em}}x=\frac{11\pi }{6}.$

One more rotation yields

$\begin{array}{ccc}\hfill 2x& =& \frac{5\pi }{3}+4\pi \hfill \\ & =& \frac{5\pi }{3}+\frac{12\pi }{3}\hfill \\ & =& \frac{17\pi }{3}\hfill \end{array}$

$x=\frac{17\pi }{6}>2\pi ,$ so this value for $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ is larger than $\text{\hspace{0.17em}}2\pi ,$ so it is not a solution on $\text{\hspace{0.17em}}\left[0,2\pi \right).$

Our solutions are Note that whenever we solve a problem in the form of $\text{\hspace{0.17em}}\mathrm{sin}\left(nx\right)=c,$ we must go around the unit circle $\text{\hspace{0.17em}}n\text{\hspace{0.17em}}$ times.

## Solving right triangle problems

We can now use all of the methods we have learned to solve problems that involve applying the properties of right triangles and the Pythagorean Theorem    . We begin with the familiar Pythagorean Theorem, $\text{\hspace{0.17em}}{a}^{2}+{b}^{2}={c}^{2},$ and model an equation to fit a situation.

## Using the pythagorean theorem to model an equation

Use the Pythagorean Theorem, and the properties of right triangles to model an equation that fits the problem.

One of the cables that anchors the center of the London Eye Ferris wheel to the ground must be replaced. The center of the Ferris wheel is 69.5 meters above the ground, and the second anchor on the ground is 23 meters from the base of the Ferris wheel. Approximately how long is the cable, and what is the angle of elevation (from ground up to the center of the Ferris wheel)? See [link] .

Using the information given, we can draw a right triangle. We can find the length of the cable with the Pythagorean Theorem.

The angle of elevation is $\text{\hspace{0.17em}}\theta ,$ formed by the second anchor on the ground and the cable reaching to the center of the wheel. We can use the tangent function to find its measure. Round to two decimal places.

$\begin{array}{ccc}\hfill \mathrm{tan}\text{\hspace{0.17em}}\theta & =& \frac{69.5}{23}\hfill \\ & & \\ & & \\ \hfill {\mathrm{tan}}^{-1}\left(\frac{69.5}{23}\right)& \approx & 1.2522\hfill \\ & \approx & 71.69°\hfill \end{array}$

The angle of elevation is approximately $\text{\hspace{0.17em}}71.7°,$ and the length of the cable is 73.2 meters.

what are you up to?
nothing up todat yet
Miranda
hi
jai
hello
jai
Miranda Drice
jai
aap konsi country se ho
jai
which language is that
Miranda
I am living in india
jai
good
Miranda
what is the formula for calculating algebraic
I think the formula for calculating algebraic is the statement of the equality of two expression stimulate by a set of addition, multiplication, soustraction, division, raising to a power and extraction of Root. U believe by having those in the equation you will be in measure to calculate it
Miranda
state and prove Cayley hamilton therom
hello
Propessor
hi
Miranda
the Cayley hamilton Theorem state if A is a square matrix and if f(x) is its characterics polynomial then f(x)=0 in another ways evey square matrix is a root of its chatacteristics polynomial.
Miranda
hi
jai
hi Miranda
jai
thanks
Propessor
welcome
jai
What is algebra
algebra is a branch of the mathematics to calculate expressions follow.
Miranda
Miranda Drice would you mind teaching me mathematics? I think you are really good at math. I'm not good at it. In fact I hate it. 😅😅😅
Jeffrey
lolll who told you I'm good at it
Miranda
something seems to wispher me to my ear that u are good at it. lol
Jeffrey
lolllll if you say so
Miranda
but seriously, Im really bad at math. And I hate it. But you see, I downloaded this app two months ago hoping to master it.
Jeffrey
which grade are you in though
Miranda
oh woww I understand
Miranda
Jeffrey
Jeffrey
Miranda
how come you finished in college and you don't like math though
Miranda
gotta practice, holmie
Steve
if you never use it you won't be able to appreciate it
Steve
I don't know why. But Im trying to like it.
Jeffrey
yes steve. you're right
Jeffrey
so you better
Miranda
what is the solution of the given equation?
which equation
Miranda
I dont know. lol
Jeffrey
Miranda
Jeffrey
answer and questions in exercise 11.2 sums
how do u calculate inequality of irrational number?
Alaba
give me an example
Chris
and I will walk you through it
Chris
cos (-z)= cos z .
cos(- z)=cos z
Mustafa
what is a algebra
(x+x)3=?
6x
Obed
what is the identity of 1-cos²5x equal to?
__john __05
Kishu
Hi
Abdel
hi
Ye
hi
Nokwanda
C'est comment
Abdel
Hi
Amanda
hello
SORIE
Hiiii
Chinni
hello
Ranjay
hi
ANSHU
hiiii
Chinni
h r u friends
Chinni
yes
Hassan
so is their any Genius in mathematics here let chat guys and get to know each other's
SORIE
I speak French
Abdel
okay no problem since we gather here and get to know each other
SORIE
hi im stupid at math and just wanna join here
Yaona
lol nahhh none of us here are stupid it's just that we have Fast, Medium, and slow learner bro but we all going to work things out together
SORIE
it's 12
what is the function of sine with respect of cosine , graphically
tangent bruh
Steve
cosx.cos2x.cos4x.cos8x
sinx sin2x is linearly dependent
what is a reciprocal
The reciprocal of a number is 1 divided by a number. eg the reciprocal of 10 is 1/10 which is 0.1
Shemmy
Reciprocal is a pair of numbers that, when multiplied together, equal to 1. Example; the reciprocal of 3 is ⅓, because 3 multiplied by ⅓ is equal to 1
Jeza
each term in a sequence below is five times the previous term what is the eighth term in the sequence
I don't understand how radicals works pls
How look for the general solution of a trig function